701 research outputs found

    Four-way data analysis within the linear mixed modelling framework

    Get PDF
    Cultivars have to be evaluated under different crop management systems across agro-ecosystems and years using multi-environment trials (MET) before releasing them to the market. Frequently, data collected in METs are arranged according to cultivar (G), management (M), location, (L) and year (Y) combinations in a four-way G x M x L x Y data table that is highly unbalanced for cultivars across locations and time. Therefore, we present the restricted maximum likelihood method (REML) for linear mixed models (LMM) with a factor analytic variance-covariance matrix for assessing cultivar adaptation to crop management systems and environments based on unbalanced datasets. Such a multi-environmental trial system has been in operation in Poland for winter wheat (Triticum aestivum L.) in the form of the Post-registration Variety Testing System (PVTS). This study aimed to illustrate the use of LMM in the analysis of unbalanced four-way G x M x L x Y data. LMM analysis provided adjusted means of grain yield for 51 winter wheat cultivars bred in different regions in Europe, tested across 18 trial locations and seven consecutive cropping seasons in two crop management intensities. The application of the four-way LMM with a factor analytic variance-covariance matrix is a complementary and effective tool for evaluating the unbalanced G x M x L x Y table. Cultivars tested had different adaptive responses to the Polish agro-ecosystems separately for each of the crop management intensities. Wide adaptation in both crop management systems was exhibited by cultivars Mulan and Jenga bred in Germany

    Restoring habitat for fire-impacted species’ across degraded Australian landscapes

    Get PDF
    In the summer of 2019–2020, southern Australia experienced the largest fires on record, detrimentally impacting the habitat of native species, many of which were already threatened by past and current anthropogenic land use. A large-scale restoration effort to improve degraded species habitat would provide fire-affected species with the chance to recover and persist in burnt and unburnt habitat. To facilitate this, decision-makers require information on priority species needs for restoration intervention, the suite of potential restoration interventions, and the priority locations for applying these interventions. We prioritize actions in areas where restoration would most likely provide cost-effective benefits to priority species (defined by each species proportion of habitat burned, threat status, and vulnerability to fires), by integrating current and future species habitat suitability maps with spatially modelled costs of restoration interventions such as replanting, removing invasive species, and implementing ecologically appropriate fire management. We show that restoring the top ∼69% (112 million hectares) of the study region (current and future distributions of priority species) accounts for, on average, 95% of current and future habitat for every priority species and costs ∼AUD73billionyr1(AUD73 billion yr−1 (AUD650 hectare−1 yr−1 ) annualized over 30 years. This effort would include restoration actions over 6 million hectares of fire-impacted habitat, costing ∼AUD8.8billion/year.Largescalerestorationeffortsareoftencostlybutcanhavesignificantsocietalcobenefitsbeyondbiodiversityconservation.Wealsoshowthatupto291MtCO2(150MtDM)ofcarboncouldbesequesteredbyrestorationefforts,resultinginapproximatelyAUD8.8 billion/year. Large scale restoration efforts are often costly but can have significant societal co-benefits beyond biodiversity conservation. We also show that up to 291 MtCO2 (∼150 Mt DM) of carbon could be sequestered by restoration efforts, resulting in approximately AUD253 million yr−1 in carbon market revenue if all carbon was remunerated. Our approach highlights the scale, costs, and benefits of targeted restoration activities both inside and outside of the immediate bushfire footprint over vast areas of different land tenures.Michelle Ward, Ayesha Tulloch, Romola Stewart, Hugh P Possingham, Sarah Legge, Rachael V Gallagher, Erin M Graham, Darren Southwell, David Keith, Kingsley Dixon, Chuanji Yong, Josie Carwardine, Tim Cronin, April E Reside, and James E M Watso

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons

    Full text link
    Using data collected with the BESII detector at e+ee^{+}e^{-} storage ring Beijing Electron Positron Collider, the measurements of relative branching fractions for seven Cabibbo suppressed hadronic weak decays D0KK+D^0 \to K^- K^+, π+π\pi^+ \pi^-, KK+π+πK^- K^+ \pi^+ \pi^- and π+π+ππ\pi^+ \pi^+ \pi^- \pi^-, D+K0ˉK+D^+ \to \bar{K^0} K^+, KK+π+K^- K^+ \pi^+ and ππ+π+\pi^- \pi^+ \pi^+ are presented.Comment: 11 pages, 5 figure

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN

    Radiative Decay Modes of the D0D^{0} Meson

    Get PDF
    Using data recorded by the CLEO-II detector at CESR we have searched for four radiative decay modes of the D0D^0 meson: D0ϕγD^0\to\phi\gamma, D0ωγD^0\to\omega\gamma, D0KˉγD^0\to\bar{K}^{*}\gamma, and D0ρ0γD^0\to\rho^0\gamma. We obtain 90% CL upper limits on the branching ratios of these modes of 1.9×1041.9\times 10^{-4}, 2.4×1042.4\times 10^{-4}, 7.6×1047.6\times 10^{-4} and 2.4×1042.4\times 10^{-4} respectively.Comment: 15 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Measurement of the Mass Splittings between the bbˉχb,J(1P)b\bar{b}\chi_{b,J}(1P) States

    Full text link
    We present new measurements of photon energies and branching fractions for the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the chi_b states are determined from the measured radiative photon energies. The ratio of mass splittings between the chi_b substates, r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information on the nature of the bbbar confining potential. We find r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world average, but more consistent with the theoretical expectation that r(1P)<r(2P); i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Warped Wilson Line DBI Inflation

    Full text link
    We propose a novel inflationary scenario in string theory in which the inflaton field is a 'Wilson line' degree of freedom in the worldvolume of a probe Dp-brane, in a warped flux compactification. Kinetic terms for Wilson line fields on the world volume of a D-brane take a nonstandard Dirac-Born-Infeld (DBI) form. Thus, we work in the framework of DBI inflation. This extends the original slow roll Wilson line inflationary scenario, where only the quadratic piece was considered. Warped DBI Wilson line inflation offers an attractive alternative to ordinary (position field) DBI inflation, inasmuch as observational and theoretical constraints get considerably relaxed. Besides the standard large non-Gaussianities in DBI scenarios, it is also possible to achieve an observable amount of gravitational waves.Comment: v3: Typos corrected, Published in JCAP; 21 page

    First observation of the decay Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} and a measurement of the ratio of branching fractions B(Bˉs0D0K0)B(Bˉ0D0ρ0)\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)}

    Get PDF
    The first observation of the decay Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} using pppp data collected by the LHCb detector at a centre-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb1^{-1}, is reported. A signal of 34.4±6.834.4 \pm 6.8 events is obtained and the absence of signal is rejected with a statistical significance of more than nine standard deviations. The Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} branching fraction is measured relative to that of Bˉ0D0ρ0\bar{B}^0 \to D^0 \rho^0: B(Bˉs0D0K0)B(Bˉ0D0ρ0)=1.48±0.34±0.15±0.12\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)} = 1.48 \pm 0.34 \pm 0.15 \pm 0.12, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the ratio of the B0B^0 and Bs0B^0_s hadronisation fractions.Comment: 10 pages, 3 figures, submitted to Phys. Lett. B; ISSN 0370-269

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore