303 research outputs found

    Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide

    Get PDF
    Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms, especially those building structures made of CaCO3. A large proportion of benthic marine calcifiers incorporate Mg2+ into their calcareous structures (i.e., Mg-calcite) which, in general, reduces mineral stability. The vulnerability of some marine calcifiers to ocean acidification is related to the solubility of their calcareous structures, but not all marine organisms conform to this because of sophisticated biological and physiological mechanisms to construct and maintain CaCO3 structures. Few studies have considered seawater saturation state with respect to species-specific mineralogy in evaluating the effect of ocean acidification on marine organisms. Here, a global dataset of skeletal mol % MgCO3 of benthic calcifiers and in situ environmental conditions (temperature, salinity, pressure, and [CO32-]) spanning a depth range of 0 m (subtidal/neritic) to 5500 m (abyssal) was assembled to calculate in situ seawater saturation states with respect to species-specific Mg-calcite mineral compositions (?Mg-x). Up to 20% of all studied calcifiers at depths 1200 m currently experience seawater mineral undersaturation with respect to their skeletal mineral phase (?Mg-x1200 m) of all studied calcifying species to seawater undersaturation. These observations underscore concerns over the ability of marine benthic calcifiers to continue to construct and maintain their calcareous structures under these conditions. We advocate that ocean acidification tipping points can only be understood by assessing species-specific responses, and because of different seawater ?Mg-x present in all marine ecosystems

    Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide

    No full text
    Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms, especially those building structures made of CaCO3. A large proportion of benthic marine calcifiers incorporate Mg2+ into their calcareous structures (i.e., Mg-calcite) which, in general, reduces mineral stability. The vulnerability of some marine calcifiers to ocean acidification is related to the solubility of their calcareous structures, but not all marine organisms conform to this because of sophisticated biological and physiological mechanisms to construct and maintain CaCO3 structures. Few studies have considered seawater saturation state with respect to species-specific mineralogy in evaluating the effect of ocean acidification on marine organisms. Here, a global dataset of skeletal mol % MgCO3 of benthic calcifiers and in situ environmental conditions (temperature, salinity, pressure, and [CO32-]) spanning a depth range of 0 m (subtidal/neritic) to 5500 m (abyssal) was assembled to calculate in situ seawater saturation states with respect to species-specific Mg-calcite mineral compositions (?Mg-x). Up to 20% of all studied calcifiers at depths <1200 m and approximately 90% of calcifiers at depths >1200 m currently experience seawater mineral undersaturation with respect to their skeletal mineral phase (?Mg-x<1). We conclude that as a result of predicted anthropogenic ocean acidification over the next 150 years, the predicted decrease in seawater mineral saturation, will expose approximately 50% (<1200 m) and 100% (>1200 m) of all studied calcifying species to seawater undersaturation. These observations underscore concerns over the ability of marine benthic calcifiers to continue to construct and maintain their calcareous structures under these conditions. We advocate that ocean acidification tipping points can only be understood by assessing species-specific responses, and because of different seawater ?Mg-x present in all marine ecosystems

    TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova

    Full text link
    Electrons and electron neutrinos in the inner core of the core-collapse supernova are highly degenerate and therefore numerous during a few seconds of explosion. In contrast, leptons of other flavors are non-degenerate and therefore relatively scarce. This is due to lepton flavor conservation. If this conservation law is broken by some non-standard interactions, electron neutrinos are converted to muon and tau-neutrinos, and electrons - to muons. This affects the supernova dynamics and the supernova neutrino signal. We consider lepton flavor violating interactions mediated by scalar bileptons, i.e. heavy scalars with lepton number 2. It is shown that in case of TeV-mass bileptons the electron fermi gas is equilibrated with non-electron species inside the inner supernova core at a time-scale of order of (1-100) ms. In particular, a scalar triplet which generates neutrino masses through the see-saw type II mechanism is considered. It is found that supernova core is sensitive to yet unprobed values of masses and couplings of the triplet.Comment: accepted to Eur.Phys.J.

    Analytic structure of rho meson propagator at finite temperature

    Full text link
    We analyse the structure of one-loop self-energy graphs for the rho meson in real time formulation of finite temperature field theory. We find the discontinuities of these graphs across the unitary and the Landau cuts. These contributions are identified with different sources of medium modification discussed in the literature. We also calculate numerically the imaginary and the real parts of the self-energies and construct the spectral function of the rho meson, which are compared with an earlier determination. A significant contribution arises from the unitary cut of the pi-omega loop, that was ignored so far in the literature

    b-Jet Identification in the D0 Experiment

    Get PDF
    Algorithms distinguishing jets originating from b quarks from other jet flavors are important tools in the physics program of the D0 experiment at the Fermilab Tevatron p-pbar collider. This article describes the methods that have been used to identify b-quark jets, exploiting in particular the long lifetimes of b-flavored hadrons, and the calibration of the performance of these algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters
    corecore