1,097 research outputs found

    Mediated catalytic voltammetry of holo and heme-free human sulfite oxidases

    Get PDF
    Herein, we report the electrocatalytic voltammetry of holo and heme-free human sulfite oxidase (HSO) mediated by the synthetic iron complexes 1,2-bis(1,4,7-triaza-1-cyclononyl)ethane iron(III) bromide, ([Fe(dtne)]Br.3HO), potassium ferricyanide (K[Fe(CN)]), and ferrocene methanol (FM) at a 5-(4′-pyridinyl)-1,3,4-oxadiazole-2-thiol (Hpyt) modified gold working electrode. Holo HSO contains two electroactive redox cofactors, comprising a mostly negatively charged cyt b (heme) domain and a Mo cofactor (Moco) domain (the site of sulfite oxidation), where the surface near the active site is positively charged. We anticipated different catalytic voltammetry based on either repulsive or attractive electrostatic interactions between the holo or heme-free enzymes and the positively or negatively charged redox mediators. Both holo and heme-free HSO experimental catalytic voltammetry has been modeled by using electrochemical simulation across a range of sweep rates and concentrations of substrate and both positive and negatively charged electron acceptors ([Fe(dtne)], [Fe(CN)] and FM), which provides new insights into the kinetics of the HSO catalytic mechanism. These mediator complexes have almost the same redox potential (all lying in the range +415 to +430 mV vs. NHE) and, thus, deliver the same driving force for electron transfer with the Mo cofactor. However, differences in the electrostatic affinities between HSO and the mediator have a significant influence on the electrocatalytic response

    Low-Molecular Weight Heparin Increases Circulating sFlt-1 Levels and Enhances Urinary Elimination

    Get PDF
    Rationale: Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1), an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo. Objective: We systematically determined serum and urine levels of angiogenic factors in preeclamptic women before and after administration of low molecular weight heparin and further characterized the interaction with heparin in biochemical studies. Methods and Results: Serum and urine samples were used to measure sFlt-1 levels before and after heparin administration. Serum levels of sFlt-1 increased by 25% after heparin administration in pregnant women. The magnitude of the increase in circulating sFlt-1 correlated with initial sFlt-1 serum levels. Urinary sFlt-1 levels were also elevated following heparin administration and levels of elimination were dependent on the underlying integrity of the glomerular filtration barrier. Biochemical binding studies employing cation exchange chromatography revealed that heparin bound sFlt-1 had decreased affinity to negatively charged surfaces when compared to sFlt-1 alone. Conclusion: Low molecular weight heparin administration increased circulating sFlt1 levels and enhanced renal elimination. We provide evidence that both effects may be due to heparin binding to sFlt1 and masking the positive charges on sFlt1 protein

    Low-Molecular Weight Heparin Increases Circulating sFlt-1 Levels and Enhances Urinary Elimination

    Get PDF
    Rationale: Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1), an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo. Objective: We systematically determined serum and urine levels of angiogenic factors in preeclamptic women before and after administration of low molecular weight heparin and further characterized the interaction with heparin in biochemical studies. Methods and Results: Serum and urine samples were used to measure sFlt-1 levels before and after heparin administration. Serum levels of sFlt-1 increased by 25% after heparin administration in pregnant women. The magnitude of the increase in circulating sFlt-1 correlated with initial sFlt-1 serum levels. Urinary sFlt-1 levels were also elevated following heparin administration and levels of elimination were dependent on the underlying integrity of the glomerular filtration barrier. Biochemical binding studies employing cation exchange chromatography revealed that heparin bound sFlt-1 had decreased affinity to negatively charged surfaces when compared to sFlt-1 alone. Conclusion: Low molecular weight heparin administration increased circulating sFlt1 levels and enhanced renal elimination. We provide evidence that both effects may be due to heparin binding to sFlt1 and masking the positive charges on sFlt1 protein

    A defect in molybdenum cofactor binding causes an attenuated form of sulfite oxidase deficiency

    Full text link
    Isolated sulfite oxidase deficiency (ISOD) is a rare recessive and infantile lethal metabolic disorder, which is caused by functional loss of sulfite oxidase (SO) due to mutations of the SUOX gene. SO is a mitochondrially localized molybdenum cofactor (Moco)- and heme-dependent enzyme, which catalyzes the vital oxidation of toxic sulfite to sulfate. Accumulation of sulfite and sulfite-related metabolites such as S-sulfocysteine (SSC) are drivers of severe neurodegeneration leading to early childhood death in the majority of ISOD patients. Full functionality of SO is dependent on correct insertion of the heme cofactor and Moco, which is controlled by a highly orchestrated maturation process. This maturation involves the translation in the cytosol, import into the intermembrane space (IMS) of mitochondria, cleavage of the mitochondrial targeting sequence, and insertion of both cofactors. Moco insertion has proven as the crucial step in this maturation process, which enables the correct folding of the homodimer and traps SO in the IMS. Here, we report on a novel ISOD patient presented at 17 months of age carrying the homozygous mutation NM_001032386.2 (SUOX):c.1097G > A, which results in the expression of SO variant R366H. Our studies show that histidine substitution of Arg366, which is involved in coordination of the Moco-phosphate, causes a severe reduction in Moco insertion efficacy in vitro and in vivo. Expression of R366H in HEK SUOX-/- cells mimics the phenotype of patient's fibroblasts, representing a loss of SO expression and specific activity. Our studies disclose a general paradigm for a kinetic defect in Moco insertion into SO caused by residues involved in Moco coordination resulting in the case of R366H in an attenuated form of ISO

    Different MAPT haplotypes influence expression of total MAPT in postmortem brain tissue

    Get PDF
    The MAPT gene, encoding the microtubule-associated protein tau on chromosome 17q21.31, is result of an inversion polymorphism, leading to two allelic variants (H1 and H2). Homozygosity for the more common haplotype H1 is associated with an increased risk for several tauopathies, but also for the synucleinopathy Parkinson's disease (PD). In the present study, we aimed to clarify whether the MAPT haplotype influences expression of MAPT and SNCA, encoding the protein alpha-synuclein (alpha-syn), on mRNA and protein levels in postmortem brains of PD patients and controls. We also investigated mRNA expression of several other MAPT haplotype-encoded genes. Postmortem tissues from cortex of fusiform gyrus (ctx-fg) and of the cerebellar hemisphere (ctx-cbl) of neuropathologically confirmed PD patients (n = 95) and age- and sex-matched controls (n = 81) were MAPT haplotype genotyped to identify cases homozygous for either H1 or H2. Relative expression of genes was quantified using real-time qPCR;soluble and insoluble protein levels of tau and alpha-syn were determined by Western blotting. Homozygosity for H1 versus H2 was associated with increased total MAPT mRNA expression in ctx-fg regardless of disease state. Inversely, H2 homozygosity was associated with markedly increased expression of the corresponding antisense MAPT-AS1 in ctx-cbl. PD patients had higher levels of insoluble 0N3R and 1N4R tau isoforms regardless of the MAPT genotype. The increased presence of insoluble alpha-syn in PD patients in ctx-fg validated the selected postmortem brain tissue. Our findings in this small, but well controlled cohort of PD and controls support a putative biological relevance of tau in PD. However, we did not identify any link between the disease-predisposing H1/H1 associated overexpression of MAPT with PD status. Further studies are required to gain a deeper understanding of the potential regulatory role of MAPT-AS1 and its association to the disease-protective H2/H2 condition in the context of PD

    Flexor Enthesopathy of the Elbow in Three Dogs: Imaging and Surgery

    Get PDF
    The aim of the study was to describe the radiographic and computed tomography (CT), findings in three dogs with elbow flexor enthesopathy. The study was a clinical one with client-owned dogs. In two dogs, lameness was localized to the elbow by clinical examination. Radiographic examination and CT were performed, and flexor enthesopaty was observed also in the third dog as an incidental finding. Flexorenthesopathy was diagnosed in all three dogs (4 joints) by combining the minimal radiographic changes with specific CT findings. Conservative and surgical treatment were performed. In all joints, any other pathology were excluded. In all three dogs, the elbow condition improved on long-term. Flexor enthesopathy at the medial epicondyle is an unrecognized condition and is a possible cause of elbow lameness in the dog

    Resource-aware Research on Universe and Matter: Call-to-Action in Digital Transformation

    Full text link
    Given the urgency to reduce fossil fuel energy production to make climate tipping points less likely, we call for resource-aware knowledge gain in the research areas on Universe and Matter with emphasis on the digital transformation. A portfolio of measures is described in detail and then summarized according to the timescales required for their implementation. The measures will both contribute to sustainable research and accelerate scientific progress through increased awareness of resource usage. This work is based on a three-days workshop on sustainability in digital transformation held in May 2023.Comment: 20 pages, 2 figures, publication following workshop 'Sustainability in the Digital Transformation of Basic Research on Universe & Matter', 30 May to 2 June 2023, Meinerzhagen, Germany, https://indico.desy.de/event/3748

    Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy

    Get PDF
    Correction to: EMBO Mol Med (2015) 7: 1580–1594. DOI 10.15252/emmm.201505323 | Published online 27 November 2015 EMBO Molecular Medicine 2017 vol 9 No12: 1764.Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABA(A) and glycine receptors (GABA(A)Rs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild- type gephyrin leading to a marked decrease in GABA(A)R surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore