15 research outputs found

    Structure and origin of the J Anomaly Ridge, western North Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 1982. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 87, no. B11 (1982): 9389–9407, doi:10.1029/JB087iB11p09389.The J Anomaly Ridge is a structural ridge or step in oceanic basement that extends southwest from the eastern end of the Grand Banks. It lies beneath the J magnetic anomaly at the young end (M-4 to M-0) of the M series magnetic anomalies. Its structural counterpart beneath the J anomaly in the eastern Atlantic is the Madeira-Tore Rise, but this feature has been overprinted by post-middle Cretaceous deformation and volcanism. In order to study the origin and evolution of the J Anomaly Ridge-Madeira-Tore Rise system, we obtained seismic refraction and multichannel reflection profiles across the J Anomaly Ridge near 39°N latitude. The western ridge flank consists of a series of crustal blocks downdropped along west-dipping normal faults, but the eastern slope to younger crust is gentle and relatively unfaulted. The western flank also is subparallel to seafloor isochrons, becoming younger to the south. Anomalously smooth basement caps the ridge crest, and it locally exhibits internal, eastward-dipping reflectors similar in configuration to those within subaerially emplaced basalt flows on Iceland. When isostatically corrected for sediment load, the northern part of the J Anomaly Ridge has basement depths about 1400 m shallower than in our study area, and deep sea drilling has shown that the northern ridge was subaerially exposed during the middle Cretaceous. We suggest that most of the system originated under subaerial conditions at the time of late-stage rifting between the adjacent Grand Banks and Iberia. The excess magma required to form the ridge may have been vented from a mantle plume beneath the Grand Banks-Iberia rift zone and channelled southward beneath the rift axis of the abutting Mid-Atlantic Ridge. Resulting edifice-building volcanism constructed the ridge system between anomalies M-4 and M-0, moving southward along the ridge axis at about 50 mm/yr. About M-0 time, when true drift began between Iberia and the Grand Banks, this southward venting rapidly declined. The results were rapid return of the spreading axis to normal elevations, division of the ridge system into the separate J Anomaly Ridge and Madeira-Tore Rise, and unusually fast subsidence of at least parts of these ridges to depths that presently are near normal. This proposed origin and evolutionary sequence for the J Anomaly Ridge-Madeira-Tore Rise system closely matches events of uplift and unconformity development on the adjacent Grand Banks.This research was supported by the Office of Naval Research, contracts N00014-75-C-0210 and N00014-80-C-0098 to Lamont-Doherty Geological Observatory and contract N00014-79-C-0071 to Woods Hole Oceanographic Institution

    Geomorphological and sedimentary processes of the glacially influenced northwestern Iberian continental margin and abyssal plains

    Get PDF
    The offshore region of northwestern Iberia offers an opportunity to study the impacts of along-slope processes on the morphology of a glacially influenced continental margin, which has traditionally been conceptually characterised by predominant down-slope sedimentary processes. High-resolution multibeam bathymetry, acoustic backscatter and ultrahigh-resolution seismic reflection profile data are integrated and analysed to describe the present-day and recent geomorphological features and to interpret their associated sedimentary processes. Seventeen large-scale seafloor morphologies and sixteen individual echo types, interpreted as structural features (escarpments, marginal platforms and related fluid escape structures) and depositional and erosional bedforms developed either by the influence of bottom currents (moats, abraded surfaces, sediment waves, contourite drifts and ridges) or by gravitational features (gullies, canyons, slides, channel-levee complexes and submarine fans), are identified for the first time in the study area (spanning ~90,000 km2 and water depths of 300m to 5 km). Different types of slope failures and turbidity currents are mainly observed on the upper and lower slopes and along submarine canyons and deep-sea channels. The middle slope morphologies are mostly determined by the actions of bottom currents (North Atlantic Central Water, Mediterranean Outflow Water, Labrador Sea Water and North Atlantic Deep Water), which thereby define the margin morphologies and favour the reworking and deposition of sediments. The abyssal plains (Biscay and Iberian) are characterised by pelagic deposits and channel-lobe systems (the Cantabrian and Charcot), although several contourite features are also observed at the foot of the slope due to the influence of the deepest water masses (i.e., the North Atlantic Deep Water and Lower Deep Water). Thiswork shows that the study area is the result of Mesozoic to present-day tectonics (e.g. themarginal platforms and structural highs). Therefore, tectonism constitutes a long-term controlling factor, whereas the climate, sediment supply and bottom currents play key roles in the recent short-term architecture and dynamics. Moreover, the recent predominant along-slope sedimentary processes observed in the studied northwestern Iberian Margin represent snapshots of the progressive stages and mixed deep-water system developments of the marginal platforms on passive margins and may provide information for a predictive model of the evolution of other similar margins.Departamento de Investigación y Prospectiva Geocientífica, Unidad de Tres Cantos, Instituto Geológico y Minero de España, EspañaDepartamento de Geología y Geoquímica, Universidad Autónoma de Madrid, EspañaDepartment of Earth Sciences, Royal Holloway University of London, Reino Unid

    Deep-water continental margins: geological and economic frontiers

    No full text
    Deep-water margins have been the focus of considerable research during the past decade. They comprise vast, underexplored regions, in which only recently have improvements in seismic imaging and drilling technology allowed the discovery of significant hydrocarbon accumulations. This volume comprises of a series of manuscripts based on studies from continental margins bordering India, East Africa, Australia, China, Norway, the United Kingdom, Iberia, Newfoundland, the southern US, West Africa and Brazil, thus offering a global perspective on the evolution and economic significance of deep-water margins. The articles in this volume examine: (i) the quantification of extension and hyperextension in distal parts of continental margins, and their relationship with regional subsidence, (ii) the importance of magmatism in the structural and thermal evolution of rifted continental margins, (iii) the processes driving and the significance of regional exhumation during and after syn-rift stretching, (iv) the tectonic setting of salt basins and (v) depositional patterns along deep-water margins. To complement this work, we present a personal view of some of the specific questions that need to be addressed in the next few years of deep-water continental margin research

    Tectonosedimentary evolution of the deep Iberia-Newfoundland margins: Evidence for a complex breakup history

    No full text
    Most of the conceptual ideas concerning sedimentary architecture and tectonic evolution of deep rifted margins are based on either intracontinental rift basins or proximal margins, both of which underwent only small amounts of crustal thinning. In this paper, we investigate the tectonosedimentary and morphotectonic evolution related to continental breakup of the highly extended, deep Iberia-Newfoundland margins. Our results show that continental breakup is a complex process distributed in time and space. On the basis of mapping of dated seismic units and borehole data we are able to identify two major phases of extension. During a first phase, dated as Tithonian to Barremian (145–128 Ma), deformation is related to exhumation of mantle rocks; basins become younger oceanward, and fault geometry changes from upward to downward concave resulting in complex sedimentary structures and basin geometries. A second phase, dated as latest Aptian (112 Ma), overprints previously exhumed mantle and accreted juvenile oceanic crust over more than 200 km leading to the formation of basement highs. The observed complex breakup history challenges classical concepts of rifting and leads to new interpretations for the tectonosedimentary evolution of deep rifted margins.<br/
    corecore