134 research outputs found

    Electrophysical properties of nanoporous cerium dioxide–water system

    Get PDF
    The impedance of nanoporous cerium dioxide with adsorbed water is investigated in the frequency range 103–104 Hz at temperatures near the water–ice phase transition. Here we show that the manifestation of impedance peculiarities at phase transition is caused by the dielectric constant of the matrix

    Natural Cross Chlamydial Infection between Livestock and Free-Living Bird Species

    Get PDF
    The study of cross-species pathogen transmission is essential to understanding the epizootiology and epidemiology of infectious diseases. Avian chlamydiosis is a zoonotic disease whose effects have been mainly investigated in humans, poultry and pet birds. It has been suggested that wild bird species play an important role as reservoirs for this disease. During a comparative health status survey in common (Falco tinnunculus) and lesser (Falco naumanni) kestrel populations in Spain, acute gammapathies were detected. We investigated whether gammapathies were associated with Chlamydiaceae infections. We recorded the prevalence of different Chlamydiaceae species in nestlings of both kestrel species in three different study areas. Chlamydophila psittaci serovar I (or Chlamydophila abortus), an ovine pathogen causing late-term abortions, was isolated from all the nestlings of both kestrel species in one of the three studied areas, a location with extensive ovine livestock enzootic of this atypical bacteria and where gammapathies were recorded. Serovar and genetic cluster analysis of the kestrel isolates from this area showed serovars A and C and the genetic cluster 1 and were different than those isolated from the other two areas. The serovar I in this area was also isolated from sheep abortions, sheep faeces, sheep stable dust, nest dust of both kestrel species, carrion beetles (Silphidae) and Orthoptera. This fact was not observed in other areas. In addition, we found kestrels to be infected by Chlamydia suis and Chlamydia muridarum, the first time these have been detected in birds. Our study evidences a pathogen transmission from ruminants to birds, highlighting the importance of this potential and unexplored mechanism of infection in an ecological context. On the other hand, it is reported a pathogen transmission from livestock to wildlife, revealing new and scarcely investigated anthropogenic threats for wild and endangered species

    Head & Neck Oncology: purpose, scope and goals-charting the future

    Get PDF
    For many years now there has been a growing frustration with the statistics of head and neck cancer. Despite the many advances in diagnosis and therapy, there has been little change in the prognosis for most cancers of the head and neck in the last 50 years, so what is the point of yet another journal? Well, it is not all bad news

    A Flexible Approach for Highly Multiplexed Candidate Gene Targeted Resequencing

    Get PDF
    We have developed an integrated strategy for targeted resequencing and analysis of gene subsets from the human exome for variants. Our capture technology is geared towards resequencing gene subsets substantially larger than can be done efficiently with simplex or multiplex PCR but smaller in scale than exome sequencing. We describe all the steps from the initial capture assay to single nucleotide variant (SNV) discovery. The capture methodology uses in-solution 80-mer oligonucleotides. To provide optimal flexibility in choosing human gene targets, we designed an in silico set of oligonucleotides, the Human OligoExome, that covers the gene exons annotated by the Consensus Coding Sequencing Project (CCDS). This resource is openly available as an Internet accessible database where one can download capture oligonucleotides sequences for any CCDS gene and design custom capture assays. Using this resource, we demonstrated the flexibility of this assay by custom designing capture assays ranging from 10 to over 100 gene targets with total capture sizes from over 100 Kilobases to nearly one Megabase. We established a method to reduce capture variability and incorporated indexing schemes to increase sample throughput. Our approach has multiple applications that include but are not limited to population targeted resequencing studies of specific gene subsets, validation of variants discovered in whole genome sequencing surveys and possible diagnostic analysis of disease gene subsets. We also present a cost analysis demonstrating its cost-effectiveness for large population studies

    Lovastatin Modulates Glycogen Synthase Kinase-3β Pathway and Inhibits Mossy Fiber Sprouting after Pilocarpine-Induced Status Epilepticus

    Get PDF
    This study was undertaken to assay the effect of lovastatin on the glycogen synthase kinase-3 beta (GSK-3β) and collapsin responsive mediator protein-2 (CRMP-2) signaling pathway and mossy fiber sprouting (MFS) in epileptic rats. MFS in the dentate gyrus (DG) is an important feature of temporal lobe epilepsy (TLE) and is highly related to the severity and the frequency of spontaneous recurrent seizures. However, the molecular mechanism of MFS is mostly unknown. GSK-3β and CRMP-2 are the genes responsible for axonal growth and neuronal polarity in the hippocampus, therefore this pathway is a potential target to investigate MFS. Pilocarpine-induced status epilepticus animal model was taken as our researching material. Western blot, histological and electrophysiological techniques were used as the studying tools. The results showed that the expression level of GSK-3β and CRMP-2 were elevated after seizure induction, and the administration of lovastatin reversed this effect and significantly reduced the extent of MFS in both DG and CA3 region in the hippocampus. The alteration of expression level of GSK-3β and CRMP-2 after seizure induction proposes that GSK-3β and CRMP-2 are crucial for MFS and epiletogenesis. The fact that lovastatin reversed the expression level of GSK-3β and CRMP-2 indicated that GSK-3β and CRMP-2 are possible to be a novel mechanism of lovatstain to suppress MFS and revealed a new therapeutic target and researching direction for studying the mechanism of MFS and epileptogenesis

    A Structured Model of Video Reproduces Primary Visual Cortical Organisation

    Get PDF
    The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition

    Base-Pair Resolution DNA Methylation Sequencing Reveals Profoundly Divergent Epigenetic Landscapes in Acute Myeloid Leukemia

    Get PDF
    We have developed an enhanced form of reduced representation bisulfite sequencing with extended genomic coverage, which resulted in greater capture of DNA methylation information of regions lying outside of traditional CpG islands. Applying this method to primary human bone marrow specimens from patients with Acute Myelogeneous Leukemia (AML), we demonstrated that genetically distinct AML subtypes display diametrically opposed DNA methylation patterns. As compared to normal controls, we observed widespread hypermethylation in IDH mutant AMLs, preferentially targeting promoter regions and CpG islands neighboring the transcription start sites of genes. In contrast, AMLs harboring translocations affecting the MLL gene displayed extensive loss of methylation of an almost mutually exclusive set of CpGs, which instead affected introns and distal intergenic CpG islands and shores. When analyzed in conjunction with gene expression profiles, it became apparent that these specific patterns of DNA methylation result in differing roles in gene expression regulation. However, despite this subtype-specific DNA methylation patterning, a much smaller set of CpG sites are consistently affected in both AML subtypes. Most CpG sites in this common core of aberrantly methylated CpGs were hypermethylated in both AML subtypes. Therefore, aberrant DNA methylation patterns in AML do not occur in a stereotypical manner but rather are highly specific and associated with specific driving genetic lesions

    From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications

    Get PDF
    This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore