68 research outputs found

    Young children's research: children aged 4-8 years finding solutions at home and at school

    Get PDF
    Children's research capacities have become increasingly recognised by adults, yet children remain excluded from the academy, with reports of their research participation generally located in adults' agenda. Such practice restricts children's freedom to make choices in matters affecting them, underestimates children’s capabilities and denies children particular rights. The present paper reports on one aspect of a small-scale critical ethnographic study adopting a constructivist grounded approach to conceptualise ways in which children's naturalistic behaviours may be perceived as research. The study builds on multi-disciplinary theoretical perspectives, embracing 'new' sociology, psychology, economics, philosophy and early childhood education and care (ECEC). Research questions include: 'What is the nature of ECEC research?' and 'Do children’s enquiries count as research?' Initially, data were collected from the academy: professional researchers (n=14) confirmed 'finding solutions' as a research behaviour and indicated children aged 4-8 years, their practitioners and primary carers as 'theoretical sampling'. Consequently, multi-modal case studies were constructed with children (n=138) and their practitioners (n=17) in three ‘good’ schools, with selected children and their primary carers also participating at home. This paper reports on data emerging from children aged 4-8 years at school (n=17) and at home (n=5). Outcomes indicate that participating children found diverse solutions to diverse problems, some of which they set themselves. Some solutions engaged children in high order thinking, whilst others did not; selecting resources and trialing activities engaged children in 'finding solutions'. Conversely, when children's time, provocations and activities were directed by adults, the quality of their solutions was limited, they focused on pleasing adults and their motivation to propose solutions decreased. In this study, professional researchers recognised 'finding solutions' as research behaviour and children aged 4-8 years naturalistically presented with capacities for finding solutions; however, the children's encounters with adults affected the solutions they found

    Towards a collaborative research: A case study on linking science to farmers' perceptions and knowledge on Arabica coffee pests and diseases and its management

    Get PDF
    The scientific community has recognized the importance of integrating farmer's perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and relevant CPaD control practices is proposed. (Résumé d'auteur

    Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies

    Get PDF
    Abstract\ud \ud Background\ud Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform “community-level” metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes.\ud \ud \ud Results\ud Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis, Leadbetterella and Truepera. The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements.\ud \ud \ud Conclusions\ud A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.This work was funded by Biotechnology and Biological Sciences Research\ud Council (BBSRC) Grants BB/1018492/1, BB/K020358/1 and BB/P027717/1, the\ud BBSRC Network in Biotechnology and Bioenergy BIOCATNET and São Paulo\ud Research Foundation (FAPESP) Grant 10/52362-5. ERdA thanks EMBRAPA\ud Instrumentation São Carlos and Dr. Luiz Alberto Colnago for providing the\ud NMR facility and CNPq Grant 312852/2014-2. The authors would like to thank\ud Deborah Rathbone and Susan Heywood from the Biorenewables Develop‑\ud ment Centre for technical assistance in rRNA amplicon sequencing

    Mantle Cell Lymphoma: Contemporary Diagnostic and Treatment Perspectives in the Age of Personalized Medicine.

    Get PDF
    Mantle cell lymphoma is a clinically heterogeneous disease occurring within a heterogeneous patient population, highlighting a need for personalized therapy to ensure optimal outcomes. It is therefore critical to understand the benefits and risks associated with both intensive and deintensified approaches. In the following review we provide a therapeutic roadmap to strategically guide treatment for newly diagnosed and relapsed/refractory patients highlighting pivotal and recently published results involving known and novel therapies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Maria Cosway’s Hours: Cosmopolitan and Classical Visual Culture in Thomas Macklin’s Poets Gallery

    Get PDF
    Thomas Macklin’s Gallery of Poets opened at the Mitre Tavern in Fleet Street in 1788 with the aim to ‘display British Genius’ through ‘Prints Illustrative of the Most Celebrated British Poets’. Early newspaper coverage promised ‘a monument of the powers of the pencil in England, as the Vatican is at Rome’. The incongruous juxtaposition between Fleet Street and the Vatican spells out the cosmopolitan ambition of the literary gallery phenomenon through its real and imagined geographies of display. Through the format of the paper gallery of prints, Macklin’s Poets offered the inventions of British Poets as a repository of painting. This chapter examines how the cosmopolitan idiom of the paper gallery is negotiated in the first number of Macklin’s Poets. This essay examines the extent to which this ambition was achieved in the first Number of Macklin’s Poets which carried an engraving of Maria Cosway’s The Hours, originally a painting with an impressively European iconographic heritage. The painting was first exhibited at the Royal Academy in 1783, and was retroactively associated by Macklin with Thomas Gray’s ‘Ode on the Spring’. The trope of the Hours brought with it a weighty provenance derived from classical marble bas-relief, through the antiquarian pages of Pietro Santi Bartoli and Bernard de Montfaucon to Flaxman’s designs for Wedgwood plaques and vases. Cosway’s name also imported into Gray’s poem her reputation as a cosmopolitan, cultured woman who had completed the Grand Tour and who moved in elite circles including those of the Prince of Wales in London and the Duke of Orleans, Pierre d’Hancarville and Thomas Jefferson in Paris. The iconographies of the painting, the print, and the poem articulate a European cosmopolitan tradition for British Art

    Book illustration

    Get PDF
    Book synopsis: William Blake, poet and artist, is a figure often understood to have 'created his own system'. Combining close readings and detailed analysis of a range of Blake's work, from lyrical songs to later myth, from writing to visual art, this collection of thirty-eight lively and authoritative essays examines what Blake had in common with his contemporaries, the writers who influenced him, and those he influenced in turn. Chapters from an international team of leading scholars also attend to his wider contexts: material, formal, cultural, and historical, to enrich our understanding of, and engagement with, Blake's work. Accessibly written, incisive, and informed by original research, William Blake in Context enables readers to appreciate Blake anew, from both within and outside of his own idiom

    Origins Space Telescope: baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20  μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250  μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588  μm, making wide-area and deep spectroscopic surveys with spectral resolving power R  ∼  300, and pointed observations at R  ∼  40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF
    corecore