96 research outputs found

    Grazing reduces bee abundance and diversity in saltmarshes by suppressing flowering of key plant species

    Get PDF
    Global declines in pollinator populations and associated services make it imperative to identify and sensitively manage valuable habitats. Coastal habitats such as saltmarshes can support extensive flowering meadows, but their importance for pollinators, and how this varies with land-use intensity, is poorly understood. We hypothesised that saltmarshes provide important bee foraging habitat, and that livestock grazing either suppresses or enhances its value by reducing the abundance - or increasing the diversity - of flowering plants. To test these hypotheses, we surveyed 11 saltmarshes in Wales (UK) under varying grazing management (long-term ungrazed, extensively grazed, intensively grazed) over three summers and investigated causal pathways linking grazing intensity with bee abundance and diversity using a series of linear mixed models. We also compared observed bee abundances to 11 common terrestrial habitats using national survey data. Grazing reduced bee abundance and richness via reductions in the flower cover of the two key food plants: sea aster Tripolium pannonicum and sea lavender Limonium spp. Grazing also increased flowering plant richness, but the positive effects of flower richness did not compensate for the negative effects of reduced flower cover on bees. Bee abundances were approximately halved in extensively grazed marshes (relative to ungrazed) and halved again in intensively grazed marshes. Saltmarsh flowers were primarily visited by honeybees Apis mellifera and bumblebees Bombus spp. in mid and late summer. Compared to other broad habitat types in Wales, ungrazed saltmarshes ranked highly for honeybees and bumblebees in July-August, but were relatively unimportant for solitary bees. Intensively grazed saltmarshes were amongst the least valuable habitats for all bee types. Under appropriate grazing management, saltmarshes provide a valuable and previously overlooked foraging habitat for bees. The strong effects of livestock grazing identified here are likely to extend geographically given that both livestock grazing and key grazing-sensitive plants are widespread in European saltmarshes. We recommend that long-term ungrazed saltmarshes are protected from grazing, and that grazing is maintained at extensive levels on grazed marshes. In this way, saltmarshes can provide forage for wild and managed bee populations and support ecosystem services

    Multiple trait dimensions mediate stress gradient effects on plant biomass allocation, with implications for coastal ecosystem services

    Get PDF
    The plant economic spectrum (PES) predicts a suite of correlated traits in a continuum from resource conservation to rapid resource acquisition. In addition to competing for resources, plants need to cope with other environmental stresses to persist and reproduce. Yet, it is unclear how multiple strategies (i.e. traits uncorrelated with the PES) affect plant biomass allocation, hindering our ability to connect environmental gradients to ecosystem services.We examined intraspecific dimensionality of leaf and root traits in the salt marsh pioneer species Spartina anglica across salinity, redox and sand content gradients, and related them to above-ground and below-ground plant biomass—properties associated with wave attenuation and sediment stabilization in coastal marshes.Through principal component analysis, we did not find support for a single PES trait dimension (strategy), but instead identified four trait dimensions: (a) leaf economic spectrum (LES, leaf analogue of PES); (b) fine roots-rhizomes; (c) coarse roots; and (d) salt extrusion. Structural equation modelling showed a shift towards the conservative side of the LES under increasing salinity, while redox had a positive influence on the coarse roots dimension. In turn, these trait dimensions were strongly associated with above-ground and below-ground biomass (BLW biomass) allocation.These results indicate that under high salinity, plants will adopt a conservative strategy and will invest more in BLW biomass. Yet, high sediment redox would still allow plants to invest in above-ground biomass. Therefore, plants' trait-mediated biomass allocation depends on the specific combination of abiotic factors experienced at the local scale.Synthesis. Our study highlights the importance of considering multiple ecological strategies for understanding the effect of the environment on plants. Abiotic stresses can influence multiple trait strategy-dimensions, with consequences for ecosystem functioning

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Movements of Diadromous Fish in Large Unregulated Tropical Rivers Inferred from Geochemical Tracers

    Get PDF
    Patterns of migration and habitat use in diadromous fishes can be highly variable among individuals. Most investigations into diadromous movement patterns have been restricted to populations in regulated rivers, and little information exists for those in unregulated catchments. We quantified movements of migratory barramundi Lates calcarifer (Bloch) in two large unregulated rivers in northern Australia using both elemental (Sr/Ba) and isotope (87Sr/86Sr) ratios in aragonitic ear stones, or otoliths. Chemical life history profiles indicated significant individual variation in habitat use, particularly among chemically distinct freshwater habitats within a catchment. A global zoning algorithm was used to quantify distinct changes in chemical signatures across profiles. This algorithm identified between 2 and 6 distinct chemical habitats in individual profiles, indicating variable movement among habitats. Profiles of 87Sr/86Sr ratios were notably distinct among individuals, with highly radiogenic values recorded in some otoliths. This variation suggested that fish made full use of habitats across the entire catchment basin. Our results show that unrestricted movement among freshwater habitats is an important component of diadromous life histories for populations in unregulated systems

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions

    Get PDF
    Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches
    corecore