30 research outputs found

    Understanding chronic nematode infections: evolutionary considerations, current hypotheses and the way forward

    Get PDF

    Genome-Wide Association Data Reveal a Global Map of Genetic Interactions among Protein Complexes

    Get PDF
    This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions among protein complexes and pathways. Despite the immense potential of gene association studies, they have been challenging to analyze because most traits are complex, involving the combined effect of mutations at many different genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an integrative approach that greatly increases power through marker clustering and projection of marker interactions within and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic interactions which map to 208 functional interactions among protein complexes. We show that such interactions are analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex

    DNA methylation levels in candidate genes associated with chronological age in mammals are not conserved in a long-lived seabird

    Get PDF
    © 2017 De Paoli-Iseppi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Most seabirds do not have any outward identifiers of their chronological age, so estimation of seabird population age structure generally requires expensive, long-term banding studies. We investigated the potential to use a molecular age biomarker to estimate age in short-tailed shearwaters (Ardenna tenuirostris). We quantified DNA methylation in several A. tenuirostris genes that have shown age-related methylation changes in mammals. In birds ranging from chicks to 21 years of age, bisulphite treated blood and feather DNA was sequenced and methylation levels analysed in 67 CpG sites in 13 target gene regions. From blood samples, five of the top relationships with age were identified in KCNC3 loci (CpG66: R2 = 0.325, p = 0.019). In feather samples ELOVL2 (CpG42: R2 = 0.285, p = 0.00048) and EDARADD (CpG46: R2 = 0.168, p = 0.0067) were also weakly correlated with age. However, the majority of markers had no clear association with age (of 131 comparisons only 12 had a p-value < 0.05) and statistical analysis using a penalised lasso approach did not produce an accurate ageing model. Our data indicate that some age-related signatures identified in orthologous mammalian genes are not conserved in the long-lived short tailed shearwater. Alternative molecular approaches will be required to identify a reliable biomarker of chronological age in these seabirds

    Methods for identifying pathway epistasis and the effects of aging on the human methylome

    No full text
    Large-scale molecular data has revolutionized the field of biology. However,such data come with considerable challenges in experimental design, computational modeling, and interpretation. Here I present three papers which take advantage of large-scale molecular data and advance the statistical methods for identifying biologically relevant features. The first paper relates epistatic interactions identified using gene knockouts to those identified using naturally occurring genetic variants. These interactions are further integrated with physical interaction data to produce a functional cellular map of yeast. The second paper implements genetic and physical interaction alignment in a user-friendly and interactive software package. The third paper investigates the effect of aging on the human methylome. Together, these works represent my principal contribution to the biological community to date and form the basis of my dissertatio
    corecore