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Abstract

Background: Transcriptomic studies hold great potential towards understanding the human aging process.
Previous transcriptomic studies have identified many genes with age-associated expression levels; however, small
samples sizes and mixed cell types often make these results difficult to interpret.

Results: Using transcriptomic profiles in CD144+ monocytes from 1,264 participants of the Multi-Ethnic Study of
Atherosclerosis (aged 55-94 years), we identified 2,704 genes differentially expressed with chronological age (false
discovery rate, FDR < 0.001). We further identified six networks of co-expressed genes that included prominent genes
from three pathways: protein synthesis (particularly mitochondrial ribosomal genes), oxidative phosphorylation, and
autophagy, with expression patterns suggesting these pathways decline with age. Expression of several chromatin
remodeler and transcriptional modifier genes strongly correlated with expression of oxidative phosphorylation and
ribosomal protein synthesis genes. 17% of genes with age-associated expression harbored CpG sites whose degree of
methylation significantly mediated the relationship between age and gene expression (p < 0.05). Lastly, 15 genes with
age-associated expression were also associated (FDR < 0.01) with pulse pressure independent of chronological age.
Comparing transcriptomic profiles of CD14+ monocytes to CD4+ T cells from a subset (n =423) of the population, we
identified 30 age-associated (FDR < 0.01) genes in common, while larger sets of differentially expressed genes were
unique to either T cells (188 genes) or monocytes (383 genes). At the pathway level, a decline in ribosomal protein
synthesis machinery gene expression with age was detectable in both cell types.

Conclusions: An overall decline in expression of ribosomal protein synthesis genes with age was detected in

CD14+ monocytes and CD4+ T cells, demonstrating that some patterns of aging are likely shared between different
cell types. Our findings also support cell-specific effects of age on gene expression, illustrating the importance of using
purified cell samples for future transcriptomic studies. Longitudinal work is required to establish the relationship
between identified age-associated genes/pathways and aging-related diseases.
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Background

Identifying molecular features that vary with chrono-
logical age has critical implications for our understand-
ing of aging and the development of age-associated
diseases. A number of previous studies have performed
systematic investigations of the relationship between age
and gene expression in various human tissues, including
T cells [1-3], whole blood [4], peripheral blood mono-
nuclear cells (PBMCs) [5], brain [6-8], and muscle tissue
[7,9]. Although very few individual genes with age-
associated expression have been identified across studies
or tissues [8], similar gene functions/pathways have been
reported. For instance, pathway analyses of age-associated
genes identified an enrichment of immune function and
inflammation genes in various mixtures of blood cells
[2-5]. Other aging-associated pathways/processes found to
be enriched in blood as well as brain and muscle tissues
include RNA processing [6-8,10] and chromatin remodel-
ing [6,7,10], while mitochondrial pathways [6,8] and more
specifically the oxidative phosphorylation/electron trans-
port pathway [7,9] were detectable in studies of skin,
brain, and muscle tissues. However, interpretation of these
findings is limited by small sample sizes and often hetero-
geneous cellular composition of the samples investigated.
Currently, there is a lack of well-powered transcriptomic
studies of aging using homogeneous cell samples.

CD4+ T cells and CD14+ monocytes are excellent cell
types for transcriptomic studies of aging in humans. T
cells and monocytes can be isolated from an easily ac-
cessible tissue (blood), and both have known roles in the
development of age-related diseases. T cells are well
known to exhibit numerous functional impairments with
advanced age and have been implicated in the age-
dependent decline in immune function, commonly known
as immunosenescence [11]. To date, the largest aging
transcriptomic study of CD4+ T cells included 31 individ-
uals, aged 25 — 81 years, from the Baltimore Longitudinal
Study of Aging. Comparison of T cell expression profiles
from individuals less than 65 years of age to those age 65
and older revealed 264 genes associated with age (p < 0.05,
FDR < 0.3) [3]. Monocytes have also been shown to exhibit
phenotypic and functional changes in the elderly [12], and
are key cells of innate immunity and major contributors to
the pathogenesis of inflammatory and degenerative dis-
eases [13]. To our knowledge the effect of aging on the
monocyte transcriptome has not yet been investigated.

Previously, we purified CD14+ monocytes from the
peripheral blood of 1,264 participants of the Multi-
Ethnic Study of Atherosclerosis (MESA). We measured
both genome-wide gene expression and DNA methyla-
tion in these purified monocyte samples using microar-
rays, and identified cytosine-guanine dinucleotides
(CpGs) whose degree of methylation was associated with
cis-gene expression (FDR <0.001) [14]. Given that DNA
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methylation can vary with age [15-20], we also investi-
gated the relationship between age and DNA methyla-
tion in the 1,264 MESA monocyte samples [21], and
identified 1,794 CpGs whose degree of methylation was
associated with age and cis-gene expression (FDR <
0.001) [21]. However, it remains unknown to what
extent age-related variations in the methylome may me-
diate the overall effect of age on gene expression.

In response to these uncertainties, here we present a
comprehensive analysis of age and gene expression in
the CD14+ monocyte samples from 1,264 MESA partici-
pants ranging in age from 55 to 94 years. Additionally,
we present an analysis of age and gene expression in circu-
lating CD4+ T cells from a subset of 423 MESA partici-
pants. This cohort study offers the unique opportunity to
1) better understand the effect of aging on gene expression
in CD14+ monocytes and CD4+ T cells, 2) compare the
aging transcriptome measured in two cell types from the
same individuals, 3) investigate CpG methylation as a po-
tential mediator of age-associated variations in the tran-
scriptome, and 4) characterize the relationships between
chronological age-associated gene expression and a clin-
ical measure of vascular age, pulse pressure.

Results and discussion

The overall study design and results are summarized in
Figure 1, and the population characteristics are de-
scribed in Additional file 1: Table S1.

Transcriptomic profiles associated with age in 1,264
monocytes samples

Transcriptomic profiling of CD14+ monocytes using mi-
croarrays (Illumina HumanHT-12 v4 Expression Bead-
Chip) revealed 10,898 expressed genes, of which 25%
had expression significantly (FDR <0.001, p <9.0x10™%)
associated with chronological age (Figure 1A, and
Additional file 1: Figure S1) after adjusting for appro-
priate biological and technical covariates including
race, gender, study site, and estimates of residual
sample contamination with non-targeted cell types
(see Methods). The effect size of a ten-year difference in
age for individual gene expression was modest (up to
10%). The majority of the associations with age remained
significant in the “disease free” (no report of diabetes, can-
cer, or cardiovascular diseases; n = 839), sex- and ethnic-
specific subgroups (Additional file 2: Table S2).

Gene set enrichment analysis [22,23] identified the ribo-
nucleoprotein complex, mitochondrial ribosome, and oxi-
dative phosphorylation pathway genes enriched among
age-associated genes. After stratifying by the effect direc-
tion of age on expression, the genes with expression nega-
tively associated with age were found to be enriched with
ribosomal/translation and mitochondrial/oxidative phos-
phorylation genes (Additional file 1: Table S3). In contrast,
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Figure 1 Study design and results summary. A) CD14+ monocytes were purified from 1,264 peripheral blood samples by magnetic bead
selection, and gene expression levels were measured using microarray. Age-associated expression (FDR < 0.01) was detected for 4,502 genes,
which were further analyzed using the indicated in silico approaches to identify and investigate potential age-related pathways. Results support a
potential transcriptomic decline in ribosomal protein synthesis machinery, as well as declines in oxidative phosphorylation and autophagy gene
expression with age. Measures of DNA methylation and pulse pressure were incorporated to investigate DNA methylation as a potential mediator
for the effect of age on gene expression, and to prioritize age-associated gene expression for potential relevance to vascular age. B) CD4+ T cells
were purified in a subset of the peripheral blood samples by magnetic bead selection, and gene expression levels were measured using microarray.
Age-associated genes (FDR < 0.01) were identified, revealing 30 genes with expression significantly associated with age in both monocytes and T cells
from the same individuals. No pathways were significantly (FDR < 0.05) enriched among age-associated genes in T cells; however, suggestive evidence
was observed for the ribonucleoprotein complex and immune response pathways.

genes with expression positively associated with age were
enriched with pathways relating to regulation of transcrip-
tion, the cytoskeleton, protein phosphorylation, and re-
sponse to insulin.

Co-expression network analysis

To identify consensus networks of genes with coordinated
expression profiles associated with age, we used a weighted
gene co-expression network analysis [24] (WGCNA), com-
bined with a stability analysis (see Methods), and examined
an expanded set of 4,502 genes associated with age at a
more liberal FDR threshold of<0.01 (Figure 1A and
Additional file 2: Table S2). Six mutually exclusive gene
network modules were identified, labeled as colors: ‘black’,
‘blue’, ‘turquoise’, ‘brown’, ‘yellow’, and ‘green’. Net-
work modules ranged in size from three to 1,466
genes, and had significant module eigengene (1st eigen-
vector) associations with age with p ranging from
1.8x1072° to 1.3x107° (Figure 2 and Additional file 1:

Table S4). Genes assigned to the same module had
moderately to strongly correlated expression (absolute
median r ranging 0.41 — 0.62). To better understand
the relationships between modules, we examined the
correlations between eigengenes of each module, and
found a very strong negative correlation between the ‘blue’
and ‘turquoise’ module eigengenes (correlation =-0.90;
Additional file 1: Figure S2).

Gene set enrichment analysis revealed significantly
(FDR < 0.05) enriched pathways within two of the six
modules, relative to all monocyte expressed genes (Table 1).
The 217 genes assigned to the ‘blue’ module, all with ex-
pression negatively associated with age, were enriched with
1) ribonucleoprotein complex genes (including translation,
ribosome biogenesis, and RNA processing genes) and 2)
mitochondrion genes (including oxidative phosphorylation
and mitochondrial ribosome genes). The largest gene net-
work module, the ‘turquoise’ module, was assigned 1,466
genes which were significantly enriched with nuclear
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Figure 2 Co-expression network modules associated with chronological age. Six mutually exclusive gene network modules with coordinate gene
expression profiles associated with chronological age were identified in 1,264 monocyte samples (using WGCNA), ranging in size from 3 to 1,466
genes. For each module (x-axis), the partial correlation between age and the module eigengene is shown (y-axis); covariates included race, sex,
site of data collection, and residual sample contamination with non-targeted cells. Below each module is the number of genes assigned to the
module, and the direction of expression association with age; network modules discussed in further detail include the ‘black’ module (containing
three genes: MCL1, TSC22D3, and CEBPD), and the ‘blue’ and ‘turquoise’ modules (which were significantly enriched with age-related pathways
shown in Table 1). The significance of the module eigengene association with age is denoted as: * p < 0.008 (Bonferroni adjusted significance

Brown Yellow Green

lumen genes, many of which with known roles in RNA
splicing and the regulation of transcription.

The other four co-expression network modules
(shown in Figure 2 as ‘black’, ‘brown’, ‘yellow’, and
‘green’) were found to have weakly to moderately corre-
lated eigengenes (Additional file 1: Figure S2) which
were positively associated with older age. No signifi-
cantly enriched pathways were detected within these
four modules with a false discovery rate of 5%; however,
there were pathways enriched with nominal significance

among these modules, including insulin signaling
(‘brown’, fold enrichment = 19.9, p = 8.88x10™*), immune
response (‘yellow’, fold enrichment = 5.1, p = 1.97x107%),
and regulation of apoptosis (‘green; fold enrichment 3.9,
p=112x107%).

Autophagy-related gene expression

Autophagy is a degradation pathway that utilizes
double-membrane vesicles, termed autophagosomes, to
engulf long-lived proteins, damaged organelles, and

Table 1 Significantly enriched Gene Ontology terms among co-expression network modules in CD14+ monocytes

Gene Ontology term Gene Count Direction of age effect Fold Enrichment Nominal P-value FDR
‘Blue’ network module (217 genes; 217/01)

Ribonucleoprotein complex: 58 (58101) 56 571E-29 7.40E-26
Translation 41 41101 6.9 348E-23 5.20E-20
Ribosome biogenesis 16 (16)01) 7.1 4.57E-09 6.84E-06
RNA processing 26 (26101) 28 5.25E-06 7.86E-03
Mitochondrion: 61 61101) 32 5.67E-18 7.36E-15
Oxidative phosphorylation 15 (15101) 10.0 1.57E-10 2.35E-07
Respiratory chain complex | 8 (8101) 113 4.55E-06 5.90E-03
Turquoise’ network module (1,466 genes; 501 9651)

Nuclear lumen: 199 (4811511) 14 9.05E-07 1.32E-03
RNA splicing 59 (1714271) 18 143E-05 2.54E-02

Results from gene set enrichment analysis are presented (from DAVID) for co-expression network modules with significantly enriched Gene Ontology (GO) terms
(FDR < 0.05). No significant enrichment was observed among the ‘black’, ‘brown’, ‘yellow’, or ‘green’ network module genes; background genes included all

10,898 genes with expression detectable in 1,264 CD14+ monocyte samples.

1 genes with expression positively associated with age; | genes with expression negatively associated with age.
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invasive pathogens, and to transport these cargos to the
lysosomes for degradation [25]. In the aging field, im-
paired autophagy is considered one of the principal de-
terminants of cellular aging, which is supported by
in vitro and animal study findings that autophagy de-
clines with age [26]. However, studies of autophagy and
age in humans are sparse.

One of the most significant age-gene expression asso-
ciations we observed in monocytes from 1,264 individ-
uals was with MCL1 (myeloid cell leukemia sequence 1;
FDR = 7.6x107*¢). MCLI, a known inhibitor of autophagy
and apoptosis, is a member of the Bcl-2 (B-cell CLL/
lymphoma 2) family, which includes many other proteins
known to regulate autophagy and apoptosis [27-29]. The
positive relationship between MCLI expression and age
tends to be linear across the range of ages (55 — 94 years)
in this population (Additional file 1: Figure S3). We con-
firmed an age-associated increase in AMJ{CLI mRNA expres-
sion in a subset of the population using RNA sequencing
technology (n = 373; p = 2.98x10% Additional file 1: Figure
S4). MCL1 gene expression was also significantly correlated
with MCL1 protein expression measured in a subset of the
population using Western Blot for (n=30, r=0.42;
p-value = 0.02; Additional file 1: Figure S5).

MCL1 was assigned to the co-expression network
module whose eigengene was most significantly asso-
ciated with age (‘black’, peigengene = 1.79x107%%). In
addition to MCLI1, the ‘black’ module contained two
other genes with expression positively associated with age —
TSC22D3 (TSC22 domain family, member 3; FDR=
6.69x10>*) and CEBPD (CCAAT/enhancer binding pro-
tein, delta; FDR = 3.82x10™"°), which encode transcription
factors involved in the suppression of inflammation
and apoptosis [30,31]. While a common regulator for
these three ‘black’ module genes has not been identi-
fied, the limited literature available points towards cy-
tokines such as IL-2 (Interleukin 2) and IL-6 in the up-
regulation of ‘black’ module gene expression, possibly
through the activation of STAT proteins [30,32-34].
Notably, STATs 1, 3, 4, and 5A were also found in our
list of genes that increase expression with age (FDR =
359 x107% 540 x107, 6.46 x107°, and 2.49x107°,
respectively).

Given the limitation of the WGCNA network ana-
lysis (hierarchical clustering only allows single module
membership), and the known role for MCL1 in the
inhibition of autophagy [29], we next examined the
relationship between age and expression for key au-
tophagy genes disregarding network module member-
ship. The associations of age and gene expression, as
well as the previously characterized protein-protein
interactions [35], are shown for key autophagy genes
in Figure 3. Among the well-known regulators of
autophagy within the Bcl-2 family [36], age was positively
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associated with expression of inhibitors of autophagy (i.e.
MCLI, BCL2, and BCL2L2; FDR: 7.60x107'° - 1.15x107%),
and negatively associated with expression of activators of
autophagy (i.e. BAD and BID; FDR: 828x107’ and
1.18x107%, respectively). Negative effects of age on gene
expression were also observed for genes which encode
proteins critical for autophagosome formation [26], in-
cluding autophagy machinery genes ATG3, ATGS, ATG?7,
and GABARAPL2 (FDR ranging 3.48x10™* — 1.8x107%).
Additionally, we observed a positive effect of age on the
expression of autophagy inhibitors belonging to the PI3K/
Akt signaling pathway (MTOR, ILIORA, STAT3, JAKI,
PDPKI, IL2RB; FDR ranging 1.45x10™® - 9.88x10™%), while
negative effects of age were observed for a PI3K/Akt sig-
naling pathway gene important for autophagy activation
[37,38], AMPK (PRKAGI, FDR = 4.87x107). However, ex-
ceptions to the apparent age-dependent transcriptional de-
cline of autophagy gene expression were also observed,
such as increasing expression of pro-autophagy genes [39],
BECNI (Beclin-1, autophagy related; FDR =1.33x10"%)
and ULKI (unc-51-like kinase 1; FDR =9.97x10"°) with
older age.

The protein networks that regulate autophagy and
apoptosis are highly interconnected, and crosstalk has
been observed, particularly among Bcl-2 family mem-
bers [36]. However, an overall transcriptional decline
in apoptosis gene expression with age was not appar-
ent, as other key regulators of the apoptotic pathway,
such as pro-apoptotic CASP2, CASPS, and FOXO3, had
increasing expression associated with older age (FDR =
3.9x107% 4.5x107%, and 6.0x107%, respectively).

In vitro and animal studies have reported a decline in
autophagy with age [26,36,40-43]; however, to our
knowledge, only one other publication has reported
an age-associated decline in expression of autophagy
genes, which was carried out in a small number of
human brain tissue samples [44]. Overall, these find-
ings for major components of core autophagy ma-
chinery and upstream regulators provide evidence for
a transcriptional decline in autophagy gene expression
with age in human monocytes. The identification of
key genes contributing to a decline in autophagy are
of great interest, as pharmacologic activation of au-
tophagy has been linked with increasing lifespan in
animal models, including mice [45]. Further, dysfunc-
tional autophagy is now widely implicated in patho-
physiological processes of many age-related diseases
such as cancer, Alzheimer’s, diabetes, and cardiovas-
cular diseases [46]. However, longitudinal studies are
necessary to validate the age-related transcriptional
decline of autophagy gene expression in human
monocytes, and to investigate the relationship be-
tween these age-related patterns and the development
of age-associated diseases.
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Oxidative phosphorylation and protein synthesis
machinery gene expression
According to the mitochondrial theory of aging, mito-
chondria are among the key players contributing to the
aging process, whose dysfunction is linked with aging
[47] and age-related diseases [48,49]. Consistent with
previous findings from multiple human tissues and
across species [50], our data revealed a pattern of de-
creasing expression of mitochondrial oxidative phos-
phorylation (OXPHOS) genes with age in monocytes,
particularly among genes within the ‘blue’ network mod-
ule (Table 1). The ‘blue’ module genes were also
enriched with ribonucleoprotein complex genes. Upon
examining ‘blue’ module genes for previously character-
ized protein-protein interactions (Figure 4), two sub-
networks were identified: one relating to the mitochon-
drial electron transport chain, and the other composed
of ribonucleoprotein complex genes. The majority of the
ribonucleoprotein complex genes were ribosomal pro-
tein synthesis machinery genes.

To better understand the relationship between age and
global expression of OXPHOS and ribosomal protein

synthesis genes, we examined the associations between age
and expression of all OXPHOS (54 genes, GO:0006119),
ribosome (204 genes, GO:005840), and mitochondrial ribo-
somal genes (51 genes, GO:0005761) expressed in mono-
cytes, disregarding network module membership. Overall,
we found almost two-thirds of the expressed OXPHOS
genes (61%) and ribosomal genes (67%) had expression
negatively associated with age (FDR <0.01, Additional file
2: Table S5 and Additional file 2: Table S6). Among the
mitochondrial ribosomal genes, 80% had expression nega-
tively associated with age (FDR<0.01) (Additional file 2:
Table S7). Using western blot to measure the protein levels
of one mitochondrial ribosomal protein (MRPS12) in a sub-
set of our samples (n=28), we found protein levels of
MRPS12 tended to correlate with mRNA expression levels
(r=0.29, p = 0.14; Additional file 1: Figure S6).

The declining expression of oxidative phosphorylation
genes in monocytes is consistent with previous findings
across species [50-53], and from previous transcriptomic
studies of aging in human muscle [7,9], and brain [7] tis-
sues. Mitochondrial dysfunctional has been widely re-
ported with aging [54] and many age-related diseases
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older age was associated with lower expression of 217 co-expressed genes assigned to the ‘blue’ network module, 77 of which (shown as diamonds)
have experimental evidence for interaction with other ‘blue’ module genes (interactions shown as edges, from STRING v9.1). Color denotes gene
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protein synthesis machinery genes from the mitochondrial ribosome (green), the ribosome (purple), and RNA processing genes (yellow). Genes relating
to other cellular processes (white) include mitochondrial protein import genes (TOMM20, TOMM?22) and DNA damage response genes (NSMCE2,
SUMO2, SUMOT, TDP2); 'blue’ module genes without reported protein-protein interactions are not shown (140 genes).
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[49]. A major finding of this work is the coordinated
down regulation of many oxidative phosphorylation and
protein synthesis machinery genes with age in mono-
cytes. However, the potential upstream mechanisms re-
sponsible for down-regulation of OXPHOS and protein
synthesis genes with age are unclear.

Potential drivers of an apparent age-related decline in
oxidative phosphorylation and protein synthesis machinery
gene expression

Six genes with reported regulatory roles for mitochon-
drial gene expression [55,56] were detectable in our
monocyte samples (PGC-la, TFB2M, TFAM, MTERE
NRF-2, POLRMT), two of which had expression signifi-
cantly and negatively associated with age (TFB2M - tran-
scription factor B2, mitochondrial, FDR = 9.94x10"°%; and
MTERF - mitochondrial transcription termination factor,
FDR =1.44x10%). However, there were no detectable
transcriptional changes with age for PCG-Ia, a master
regulator of mitochondrial biogenesis, which indirectly
up-regulates expression of nuclear OXPHOS genes,

mitochondrial protein synthesis machinery, and mito-
chondrial protein import genes [57].

To identify potential transcriptional regulators for the
coordinated expression of oxidative phosphorylation and
protein synthesis machinery genes observed in mono-
cytes, we next looked for enrichment [22] of transcrip-
tion factor binding sites (TFBS) among genes assigned
to the ‘blue’ co-expression network module. No TFBS
were significantly (FDR <0.05) enriched among ‘blue’
module genes compared to all monocyte expressed
genes. The ‘turquoise’ module on the other hand, which
was strongly and negatively correlated with the ‘blue’
module (r<-0.90; Additional file 1: Figure S2), con-
tained a large number of genes (1,466 genes) which were
enriched with binding sites for over 50 different transcrip-
tion factors compared to all monocyte expressed genes
(Additional file 2: Table S8). Further, the ‘turquoise’ mod-
ule included 238 genes with known roles in regulation of
transcription (GO:0045449), including a number of tran-
scription factors with expression increasing with older age
(FOXO4, YY1, NFKBI, AHR; FDR ranging 148x107 —
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6.50x10~%) and chromatin remodelers which increased with
older age (SWI/SNF family genes: ARIDIA, SMARCA4,
SMARCA2, SMARCC2; FDR ranging 1.10x107° -
5.94x107*) (Additional file 2: Table S9). Future studies
may benefit from our identification of several chroma-
tin remodeler and transcriptional modifier genes with
expression profiles strongly correlated with an apparent
coordinated transcriptional decline of key genes re-
quired for mitochondrial biogenesis.

Paradoxically, inhibition of autophagy should reflect
an anabolic state and increasing rates of protein synthe-
sis and oxidative phosphorylation [58]; however, in the
aging monocyte transcriptome we observed a potential
transcriptional decline in autophagy, and a concomitant
decline in OXPHOS and protein synthesis gene expres-
sion with age. Intriguingly, a decline in AMPK activity
with age could potentially explain this paradox, given
the dual role of AMPK to activate autophagy and mito-
chondrial biogenesis [37,57,59]. Similar to the decline in
AMPK activity that has been previously reported in aged
mice [54], here, we reported decreased expression of the
regulatory subunit of AMPK (PRKAGI). These results
provide clues for further investigations of the role of
AMPK dysfunction in aging, and identify potential tran-
scriptional regulators of an age-related decline in oxida-
tive phosphorylation and ribosomal protein synthesis
machinery gene expression.

Epigenomic regulation of age-associated gene expression
To investigate DNA methylation as a potential regulator
of the aging transcriptome, we performed lookups using
the list of expression-associated methylation sites (eMS)
that we recently reported from the same 1,264 mono-
cyte samples [14]. We identified 48% of age-associated
genes (1,304 genes, FDR<0.001) harboring eMS.
Methylation profiles were both negatively correlated
(69%; range: —-0.77, -0.13) and positively correlated
(31%; range: 0.13, 0.73) with gene expression profiles.
Using mediation analyses to investigate DNA methylation
as a potential mediator for the effect of age on gene expres-
sion, 17% of age-associated genes (454 genes, FDR < 0.001)
were identified harboring CpG sites whose degree of
methylation significantly mediated (pindirect < 0.05) the effect
of age on gene expression (Additional file 2: Table S10), in-
cluding a similar percentage of genes from each of the three
age-associated pathways: five OXPHOS genes (21%), 18
ribosomal genes (18%), and five autophagy genes (19%)
(Table 2). The majority of the mediation effects had similar
directions of effect as the overall effect of age on gene
expression (85%).

Different from previous studies of the aging transcrip-
tome that did not have measures of DNA methylation,
our concurrent transcriptomic and methylomic profiling
of the same batch of monocytes allowed us to detect

Page 8 of 17

genes harboring CpG sites with methylation profiles
which significantly mediated the associations between
age and gene expression. These potentially functional
CpGs are enriched in predicted enhancer regions com-
pared to all CpGs measured by microarray [14,21], sug-
gesting that DNA methylation of enhancers could play a
role in the regulation of gene expression with age. How-
ever, we cannot rule out the reverse causality of age-
associated expression affecting methylation profiles or
uncontrolled (hidden) variation resulting in the correl-
ation between methylation and gene expression. Add-
itionally, the majority of the age and gene expression
associations (direct effects) remained significant after
adjusting for CpG methylation, suggesting that regula-
tors other than the measured CpG methylation likely
contribute to the relationship between age and gene ex-
pression. Moreover, further investigations of other po-
tential drivers for gene expression changes with age are
warranted.

Transcriptomic profiles associating with pulse pressure
To see if age-related changes in gene expression may
also reflect vascular age, we examined the relationships
between age-associated gene expression profiles and a
surrogate of vascular age, pulse pressure. Of the 2,704
genes associated with age (FDR<0.001) in the 1,264
monocyte samples, 15 genes were also associated with
pulse pressure (FDRgenome-wide < 0.01), after adjusting for
age and appropriate biological and technical covariates
(Additional file 2: Table S11). The gene most signifi-
cantly associated with pulse pressure was PTGER2
(prostaglandin E receptor 2 (subtype EP2)), which had
increasing expression associated with higher pulse pres-
sure (FDRgenome-wide = 3.15% 1077). Additionally, the increas-
ing expression of MCLI1, a known inhibitor of autophagy
[29] and one of the most significant associations we de-
tected with age in monocytes, was also independently asso-
ciated with higher pulse pressure.

Transcriptomic profiles associated with age in 423 T cell
and monocyte samples

We carried out transcriptomic profiling of CD4+ T cell
samples using microarrays (Illumina HumanHT-12 v4
Expression BeadChip) for a subset of the MESA samples
with transcriptomic data in monocytes (n = 423), and de-
tected 10,322 genes expressed in both T cell and mono-
cyte samples (Figure 1B). A comparison of the effect of
age on gene expression in T cells and monocytes is
shown in Figure 5, which reveals 188 genes with expres-
sion significantly associated with age only in T cells, 383
genes associated with age only in monocyte samples,
and 30 genes with age-associated expression in both the
T cell and monocyte samples (FDR < 0.01, Additional file
2: Table S12). The majority (93%) of the genes detected
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Table 2 Age-associated methylation predicted to mediate the relationship between age and expression of oxidative

phosphorylation, ribosome, and autophagy genes

Age ~ Methylation

Methylation ~ cis Gene expression

Age ~ Gene expression

CpG ID Chr Cor FDR Gene Cor FDR Indirect Direct Total

Beta (SE) P-value Beta (SE) P-value Beta (SE) FDR
Oxidative phosphorylation genes from gene ontology (GO:0006119):
cg07388493 1 —04  24E-42 NDUFS5 022 1.1E-12 —-0.097 (0.014) 2.7E-12  —-0.09 (0.03) 19E-03 -0.19(0.03) 1.2E-08
€g24704287 19 -0.17 16E-07 NDUFB7 0.16 1.3E-05 —0.037 (0.009) 1.8E-05 -0.11(0.03) 1.8E-05 —0.15(0.03) 94E-06
€g09267188 8 -0.14 21E-05 UQCRB -0.13 1.1E-03 0.028 (0.007)  3.7E-05 0.10(0.03) 93E-05 0.13(0.03) 1.0E-05
€g27246938 7 —0.11 75E-04 NDUFB2 -0.24 25E-14 0.030 (0.007)  6.1E-05 —0.14(0.03) 1.1E-07 -0.11(0.03) 1.2E-04
€g09876992 22 032 33E-26 NDUFA6 -0.13 8.5E-04 —0.027 (0.007) 18E-04 —-0.17(0.03) 7.2E-10 —0.20 (0.03) 6.9E-04
Ribosome genes from gene ontology (GO:005840):
€g17328880 19 —025 34E-16 MRPL34 029 4.0E-22 —-0.070 (0.01)  76E-12 —007 (0.03) 48E-03 —0.14(0.03) 3.0E-06
€g04865726 1 -0.27 7.5E-19 MRPL20 0.24 1.2E-14 —0.069 (0.011) 7.7E-11  =0.12(0.03) 39E-06 —0.19 (0.03) 9.2E-09
€g08885076 2 -02  81E-11 MRPL30 0.2 7.6E-10 —0.042 (0.008) 69E-08 —0.05(0.03) 53E-02 —009 (0.03) 1.1E-03
cg16399745 12 —029 64E-21 MRPLST -0.15 84E-05 0.036 (0.008)  55E-06 —0.15(0.03) 1.1E-08 —0.12(0.03) 6.6E-05
€g16604233 6 -0.26 3.0E-17 RPSI8 -0.16 4.6E-06 0.042 (0.01) 16E-05 -0.16 (0.03) 8.1E-08 —0.11(0.03) 1.3E-04
€g16000022 11 -0.16  1.8E-06 MRPL21 -0.15 4.9E-05 0.028 (0.007)  28E-05 0.10(003) 1.3E-04 0.13(003) 6.9E-06
cg17614703 5 014  32B05 CANX -0.13 7.7E-04 0.028 (0.007)  29E-05 0.10(0.03) 82E-05 0.13(0.03) 32E-05
€g15829665 6 —0.12 5.5E-04 MRPLI8 -0.13 1.3E-03 0.028 (0.007)  36E-05 0.10(0.03) 93E-05 0.13(003) 4.6E-05
€g21252105 9 —-0.18 2.8E-08 MRPL41 0.15 4.3E-05 —0.035 (0.009) 7.8E-05 -0.10(0.03) 2.2E-04 —0.13(0.03) 27E-05
cg14663914 19  —0.11 1.1E-03 RPSI5 0.17 1.7E-06 —0.027 (0.007) 89E-05 —0.17(0.03) 1.5E-09 —0.20 (0.03) 6.5E-06
€g05017994 5 0.16  94E-07 MRPL36 -0.15 2.3E-05 —-0.039 (001) 96E-05 -0.14(0.03) 32E-07 -0.18(0.03) 1.9E-07
€g23163653 6 -0.16 3.8E-07 ABCFI -0.13 6.2E-04 —-0.027 (0.007) 10E-04 -0.17(0.03) 1.2E-09 —0.20 (0.03) 1.3E-03
cg10700019 8 —0.11 98E-04 RPL8 -0.28 52E-21 0033 (0.008)  1.1E-04 0.12(003) 77E-06 0.15(0.03)  1.0E-05
€g27209993 6 -0.14  2.7E-05 MRPSI10 0.17 4.0E-07 —0.023 (0.006) 13E-04 -006 (0.03) 27E-02 —0.09 (0.03) 1.1E-03
cg00435173 17 —02  3.7E-10 RPL27 0.13 1.1E-03 0033 (0.009) 14E-04 0.12(003) 48E-06 0.15(0.03) 8.0E-04
cg00530414 16 —021 83E-12 RPSI5A -0.15 3.9E-05 0.030 (0.008)  18E-04 —0.13(0.03) 50E-06 —009 (0.03) 1.0E-03
€g22803868 17  —0.12 6.1E-04 NUFIP2 -0.14 2.0E-04 0.023 (0.007)  47E-04 0.11(003) 88E-05 0.13(003) 7.1E-05
cg13084677 4 0.12  38E-04 RPLY 0.19 3.5E-09 0017 (0.006)  46E-03 —0.12(0.03) 1.8E-05 —-0.10(0.03) 7.7E-04
Autophagy genes from Figure 3:
€g24213719 18 019  19E-09 BCL2 0.13 7.2E-04 0.028 (0.007)  33E-05 0.10(003) 14E-04 0.13(0.03) 1.2E-03
cg11789534 22 —0.17 13E-07 IL2RB 0.16 4.1E-06 —0.032 (0.008) 46E-05 009 (0.02) 42E-05 006002 9.9E-04
€g21826784 1 —0.12 34E-04 FRAPT -0.13 9.5E-04 —-0.027 (0.007) 12E-04 -0.17(0.03) 22E-09 -0.20(0.03) 23E-05
€g22117188 3 -0.13  14E-04 PRKCD -0.18 1.9E-07 —-0.027 (0.007) 15E-04 -0.17(0.03) 52E-10 —0.20 (0.03) 8.6E-05
€g18728264 11 -0.19 1.9E-09 IL10RA 0.14 39E-04 —0.020 (0.006) 4.3E-04 021(003) 1.7E-13  0.19 (0.03) 1.5E-08

CpGs whose degree of methylation significantly associated with age (FDR < 0.001), cis-gene expression (+1 MB; FDR < 0.001), and was predicted to mediate

(indirect p-value < 0.05) the total effect (total beta, SE, FDR) of age on gene expression. Results include only the most significant mediating CpG identified per
gene for oxidative phosphorylation genes (from Gene Ontology pathway GO:0006119), ribosome genes (from GO:005840) and autophagy genes (from Figure 3),
and are sorted first by pathway, then by the significance of the mediation effect (full mediation results are presented in Additional file 2: Table S10). The direct

effects of age on gene expression not supported to be mediated by methylation are also shown (direct beta, SE, p-value). Analyses included 1,264 CD14+

monocyte samples; partial correlations (cor) were adjusted for sex, race, study site, residual contamination with non-targeted cells, and microarray chip effects.

with age-associated expression in the subset of 423
monocyte samples were also significantly (FDR <
0.001) associated with age in the full sample of 1,264
monocytes, with similar effect directions observed for
all genes (Additional file 1: Figure S7 and Additional

file 2: Table S13).

Age-associated genes identified in the subset of 423
monocyte samples were enriched with ribonucleoprotein
complex genes, similar to results from the expanded
sample size of monocytes. After stratifying by the effect
direction, the genes with expression negatively associ-
ated with age were enriched with ribonucleoprotein
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CD14+ Monocytes (FDR < 0.01, 383 genes)
CD4+ T cells and CD14+ monocytes (FDR < 0.01, 30 genes)
CD4+ T cells and CD14+ monocytes (FDR 2 0.01, 9721 genes)

I CD4+ T cells (FDR < 0.01, 188 genes)
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Figure 5 Comparison of the effect of age on gene expression in T
cells and monocyte samples. The correlation between age and gene
expression is shown in T cells (y-axis), compared to monocytes (x-axis)
from 423 individuals, including all 10,322 genes expressed in both T
cells and monocytes. Color indicates genes with expression
significantly associated with age (FDR < 0.01) in T cells (green, 188
genes) or monocytes (red, 383 genes), both T cells and monocytes
(blue, 30 genes), or neither T cells nor monocytes (grey); association
analyses were adjusted for race, sex, study site, and residual cell

contamination with non-target cells.
A

complex and mitochondrion genes, while genes with ex-
pression positively associated with age were enriched for
cellular biosynthetic processes (Additional file 1: Table
S14). The down-regulated mitochondria genes included
ATP synthase complex genes (ATPSE, ATP5S, ATP5G1,
ATPSI, ATP5G3) and electron transport chain genes
(NDUFSS, TXNRD1, NDUFS3, CRYZLI) which are key
genes for oxidative phosphorylation.

No pathways were significantly (FDR < 0.05) enriched
among genes with age-associated expression in T cells;
however, there was suggestive enrichment for the ribo-
nucleoprotein complex among genes with expression
negatively associated with age, and for the immune re-
sponse pathway among genes with expression positively
associated with age (Additional file 1: Table S14). Provid-
ing further evidence for a transcriptional decline of ribo-
somal protein synthesis genes with age in T cells, the
majority (62%) of the ribonucleoprotein complex genes
with expression profiles negatively associated with age in
monocytes were also negatively associated with age in T
cells (p <0.05). However, the overall decline of oxidative
phosphorylation gene expression with older age that was
detected in monocytes was not detectable in T cells.

These results, from a large number of purified T cell and
monocyte samples from the same individuals, identify only
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a small number of genes with transcriptomic profiles asso-
ciated with aging in both cell types, supporting the idea
that some age-related changes may be cell-type specific.
However, the potential decline in protein synthesis ma-
chinery gene expression observed in both cell types, and
previously reported in human blood leukocytes [10] and
brain tissue [6], further support the hypothesis that some
transcriptomic changes are conserved to varying degrees
across cell types.

Limitations of the study

Several limitations of the study should be noted. Our in-
vestigation included adults aged 55 to 94 years; there-
fore, these results may not be applicable to younger
populations. Also, our primary analysis used microarrays
to measure gene expression rather than RNA sequen-
cing, which may have missed low abundance genes. The
cross-sectional nature of the investigation also limits in-
ferences for the associations of gene expression with
chronological age. Longitudinal analyses are necessary to
confirm the effect of age on expression of identified
genes and gene networks. We also acknowledge that the
analyses of CpG methylation as a potential mediator of
the effect of age on gene expression should be inter-
preted with caution since statistical mediation does not
differentiate correlation from causation. Lastly, some of
the age-associated transcriptional differences we ob-
served may not reflect differences in protein levels or
protein activity, although we have quantified protein
levels using western blot for two of our transcriptional
signals.

Conclusions

In this transcriptomic study of purified monocytes from
a large, multi-ethnic and mixed gender population, older
age appears to be associated with a transcriptomic de-
cline in ribosomal protein synthesis machinery, oxidative
phosphorylation, and autophagy pathways. The ability to
detect a large number of biologically plausible gene ex-
pression changes support the use of CD14+ monocytes,
a readily accessible cell population, as a model for fur-
ther investigations of human aging, including the poten-
tial decline of autophagy and mitochondrial biogenesis
with age. Our data also provides clues to the potential
drivers of these transcriptomic changes with age, such as
chromatin remodeler genes and DNA methylation. Fur-
ther functional work is required to investigate the causes
and consequences of these mRNA expression alterations
with age.

Our sample size of purified T cells from a subset of
the population is also the largest reported to date, which
allowed sufficient power to detect age-sensitive genes,
and provided suggestive evidence for transcriptomic al-
terations in ribosomal protein synthesis machinery and
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immune response pathways with age. The full list of
age-genes identified from either CD4+ T cells or CD14+
monocytes harbors many strong candidate genes for fu-
ture studies of the aging process. In designing such ex-
perimental studies one may want to consider that there
may be tissue- or cell-specific changes with age, al-
though some patterns of aging are likely similar between
different human tissues.

Methods

Study population

The Multi-Ethnic Study of Atherosclerosis (MESA) was
designed to investigate the prevalence, correlates, and
progression of subclinical cardiovascular disease in a
population cohort of 6,814 participants. Since its incep-
tion in 2000, five clinic visits collected extensive clinical,
socio-demographic, lifestyle, behavior, laboratory, nutri-
tion, and medication data [60]. The present analysis is
based on analyses of purified monocyte and T cell sam-
ples from the April 2010 — February 2012 examination
(Exam 5) of 1,264 randomly selected MESA participants
(55 — 94 years old, Caucasian (47%), African American
(21%) and Hispanic (32%), female (51%)) from four
MESA field centers (Baltimore, MD; Forsyth County,
NC; New York, NY; and St. Paul, MN). The study protocol
was approved by the Institutional Review Boards at Johns
Hopkins Medical Institutions, Wake Forest University
Health Sciences, Columbia University Medical Center, and
the University of Minnesota. All participants signed in-
formed consent.

Purification of CD14+ Monocytes and CD4+ T cells
Centralized training of technicians, standardized proto-
cols, and extensive quality control (QC) measures were
implemented for collection, on-site processing, and ship-
ment of MESA specimens, and routine calibration of
equipment was performed. Blood was initially collected
in sodium heparin-containing Vacutainer CPTTM cell
separation tubes (Becton Dickinson, Rutherford, NJ) to
separate peripheral blood mononuclear cells from other
elements within two hours from blood draw. Subse-
quently, monocytes and T cells were isolated with anti-
CD14 and anti-CD4 monoclonal antibody coated mag-
netic beads, respectively, using autoMACS automated
magnetic separation unit (Miltenyi Biotec, Bergisch
Gladbach, Germany). Initially flow cytometry analysis of
18 specimens was performed, including samples from
all four MESA field centers, which were found to be
consistently > 90% pure.

DNA/RNA extraction

DNA and RNA were isolated from samples simultan-
eously using the AllPrep DNA/RNA Mini Kit (Qiagen,
Inc., Hilden, Germany). DNA and RNA QC metrics
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included optical density (OD) measurements, using a
NanoDrop spectrophotometer and evaluation of the in-
tegrity of 18 s and 28 s ribosomal RNA using the Agilent
2100 Bioanalyzer with RNA 6000 Nano chips (Agilent
Technology, Inc., Santa Clara, CA) following manufac-
turer’s instructions. RNA with RIN (RNA Integrity)
scores > 9.0 was used for global expression microarrays.
The median of RIN for our 1,264 samples was 9.9.

Global expression quantification

The Ilumina HumanHT-12 v4 Expression BeadChip
and Illumina Bead Array Reader were used to perform
the genome-wide expression analysis, following the Illu-
mina expression protocol. The Illumina TotalPrep-96
RNA Amplification Kit (Ambion/Applied Biosystems,
Darmstadt, Germany) was used for reverse transcription,
and amplification with 500 ng of input total RNA (at
11ul). 700 ng of biotinylated cRNA was hybridized to a
BeadChip at 58°C for 16 — 17 hours. To avoid potential
biases due to batch, chip, and position effects, a stratified
random sampling technique was used to assign individ-
ual samples (including five common control samples for
the first 480 samples) to specific BeadChips (12 samples/
chip) and chip position.

Epigenome-wide methylation quantification

The [llumina HumanMethylation450 BeadChip and HiScan
reader were used to perform the epigenome-wide methyla-
tion analysis. The EZ-96 DNA Methylation™ Kit (Zymo
Research, Orange, CA) was used for bisulfate conversation
with 1 pg of input DNA (at 45 pl). 4 pl of bisulfite-
converted DNA were used for DNA methylation assays,
following the Illumina Infinium HD Methylation protocol.
This consisted of a whole genome amplification step
followed by enzymatic end-point fragmentation, precipita-
tion, and resuspension. The resuspended samples were hy-
bridized on HumanMethylation 450 BeadChips at 48°C for
16 h. The individual samples were assigned to the Bead-
Chips and to chip position using the same sampling scheme
as that for the expression BeadChips.

Quality control and Pre-processing of microarray data

Data pre-processing and quality control (QC) analyses were
performed in R (http://www.r-project.org/) using Biocon-
ductor (http://www.bioconductor.org/) packages. For ex-
pression data, data corrected for local background were
obtained from Illumina’s proprietary software GenomeStudio.
QC analyses and bead type summarization (average bead
signal for each type after outlier removal) were performed
using the beadarray package [61]. Detection P-values were
computed using the negative controls on the array. The
negc function of the limma [62] package was used to per-
form a normal-exponential convolution model analysis to
estimate non-negative signal, quantile normalization using
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all probes (gene and control, detected and not detected)
and samples, addition of a recommended (small) offset,
log, transformation, and elimination of control probe data
from the normalized expression matrix. Multidimensional
scaling plots showed the five common control samples
were highly clustered together and identified three outlier
samples, which were excluded subsequently. For both
monocyte and T cell assays, we included 2% blind dupli-
cates. Correlations among technical replicates exceeded
0.997.

The Illumina HumanHT-12 v4 Expression BeadChip
included >47,000 probes for >30,000 genes (with unique
Entrez gene IDs). Statistical analyses excluded probes
with non-detectable expression in >90% of MESA sam-
ples (using a detection p-value cut-off of 0.0001), probes
overlapping repetitive elements or regions, probes with
low variance across the samples (<10th percentile), or
probes targeting putative and/or not well-characterized
genes, i.e. gene names starting with KIAA, FLJ, HS,
MGC, or LOC.

Bead-level methylation data were summarized in
GenomeStudio. Because the Illumina HumanMethyla-
tion450 BeadChip technology employs a two-channel
system and uses both Infinium I and II assays,
normalization was performed in several steps using the
lumi package [63]. We first adjusted for color bias using
“smooth quantile normalization”. Next, the data were back-
ground adjusted by subtracting the median intensity
value of the negative control probes. Lastly, data were
normalized across all samples by standard quantile
normalization applied to the bead-type intensities and
combined across Infinium I and II assays and both
colors. QC measures included checks for sex and race/
ethnicity mismatches, and outlier identification by
multidimensional scaling plots. The final methylation
value for each methylation probe was computed as the
M-value, essentially the log ratio of the methylated to
the unmethylated intensity [64]. The M-value is well
suited for high-level analyses and can be transformed
into the beta-value, an estimate of the percent methyla-
tion of an individual CpG site that ranges from 0 to 1
(thus M is logit(beta-value)).

The Illumina HumanMethylation450 BeadChip in-
cluded probes for >485,000 CpGs. Statistical analyses ex-
cluded CpGs with: “detected” methylation levels in <90%
of MESA samples using a detection p-value cut-off of
0.05, existence of any SNPs within 10 base pairs of the
targeted CpG, or overlap with a repetitive element or
region.

Pre-processing with global normalization removed
large position and chip effects across all probes; how-
ever, probe-specific chip effects were found for some
CpGs and gene transcripts, while probe-specific position
effects existed for some CpGs but were ignorable for all
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gene transcripts. These probe-specific effects were in-
cluded as covariates in all subsequent analyses.

Pulse pressure measures

Blood pressure was measured 3 times at 2-minute inter-
vals using an automated oscillometric device (Dinamap
Monitor Pro 100, GE Healthcare, Milwaukee, WI) after
participants had rested for five minutes in the seated
position (MESA Exam 5). Appropriately sized cuffs were
used for blood pressure assessment. Blood pressure was
defined as the average of the second and third readings.
The average systolic and diastolic blood pressure values
were used to calculate pulse pressure, which was defined
as systolic minus diastolic blood pressure.

Association analyses

The overall goal of the association analysis was to iden-
tify associations, at the genome-wide level, between age
and gene expression, age and CpG methylation, and
transcript expression and CpG methylation. Association
analyses were performed using the linear model (/m)
function of the Stats package and the stepAIC function
of the MASS package in R. To identify gene transcripts
or methylation sites associated with age, we fit separate
linear regression models with age as a predictor of tran-
script expression or the M-value for each gene transcript
or CpQG site, respectively. Covariates were sex, race/eth-
nicity, study site, expression/methylation chip, methyla-
tion position (for age-CpG methylation analyses only),
and residual sample contamination with non-targeted
cells (e.g. non-monocytes, see below). To identify methy-
lation sites associated with gene expression in cis, we fit
separate linear regression models with the M-value for
each CpG site (adjusted for methylation chip and pos-
ition effects) as a predictor of transcript expression for
any autosomal gene within 1 Mb of the CpG in question.
Covariates were age, sex, and race/ethnicity, study site,
expression chip, and residual sample contamination with
non-targeted cells. Sex- and ethnicity-stratified analyses
were performed as an internal validation and check of
generalizability. To look for potential population stratifi-
cation, we used EIGENSTRAT [65] to compute principal
components (PCs) for each race, based on Affymetrix
6.0 array genotype data [66], and examined the association
between the first five PCs and gene expression, as well as
CpG methylation, in race stratified analyses. Less than 1%
of expression transcripts and CpG methylation sites in
monocytes were associated with PCs in the Caucasian
and African American populations (FDR < 0.05). How-
ever, 14.7% of gene expression transcripts and 3.1% of
methylation sites in the Hispanic population were asso-
ciated with the first two PCs (FDR <0.05); therefore,
analyses in the Hispanic population were adjusted for
the first two PCs. P-values were adjusted for multiple
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testing using the q-value FDR method [67]. The re-
ported FDR was calculated at the genome-wide level for
all genes, CpGs, or cis-gene/CpGs that were tested.

Association analyses for individual gene transcripts
and pulse pressure were performed using the linear
model (/m) function in R. We fit separate linear regres-
sion models with transcript expression as a predictor of
pulse pressure. Covariates included age, sex, race/ethni-
city, study site, expression/methylation chip, methylation
position (for age-CpG methylation analyses only), and
residual sample contamination.

To estimate residual sample contamination for mono-
cyte and T cell data analysis, we generated separate enrich-
ment scores for neutrophils, B cells, T cells, monocytes,
and natural killer cells. We implemented a Gene Set
Enrichment Analysis [68] to calculate the enrichment
scores using the gene signature of each blood cell type in
the ranked list of expression values for each MESA sam-
ple. The cell type-specific signature genes were selected
from previously defined lists [69] and passed the following
additional filters: at least four-fold more highly expressed
in the targeted cell type than in other cell populations and
low expression levels in the targeted cells.

Functional annotation analysis

DAVID Bioinformatics Resources 6.7 was used to exam-
ine the enrichment (FDR < 0.05) of GO (Gene Ontology)
pathways among gene lists, relative to all genes
expressed and passing QC) [22,23]. Experimentally de-
termined protein-protein interactions listed in STRING
(Search Tool for the Retrieval of Interacting Genes/
Proteins v9.05 and v9.10) [35] were used to create
networks of biological connections. Cytoscape [70]
was used to visualize protein-protein interactions re-
ported by STRING.

Weighted gene Co-expression network analyses

For gene network analysis we pre-selected age-
associated genes at a less stringent FDR level of 0.01,
resulting in a subset of 4,129 genes. To cluster the
subset of 4,129 genes into network modules of highly
correlated transcripts, we applied the Weighted Gene
Co-Expression Network Analysis as implemented in the
R package WGCNA [24]. We used this method to first
construct a weighted network based on the pairwise cor-
relations among all transcripts considered, using soft
thresholding with parameter values chosen to produce
approximately a scale-free topology. Then, using the
topological overlap measure to estimate the network
interconnectedness, the transcripts were hierarchically
clustered. We wused the default parameters of
WGCNA, except for changing the correlation type
from Pearson to biweight midcorrelation (which is
more robust to outliers) and set the minimum size
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for module detection from 20 to 10. For each mod-
ule, we obtained the eigengene (the first eigenvector
of the within-module expression correlation matrix,
or the first right-singular vector of the standardized
within-module expression matrix).

Stability analysis and consensus modules

Unfortunately, the module structure identified by
WGCNA tends to be rather unstable, even when the
sample size is relatively large (in the hundreds). Stability
of the module structure can be assessed by repeatedly
making relatively small, random changes to the data and
re-running the analysis, and then assessing the agree-
ment between the resulting structures. One way of mak-
ing such changes to the data is by sampling random
subsets of the data (“sub-sampling”) which contain most
but not all of the samples. We performed sub—sampling
by obtaining a random sample of 80% of the observa-
tions (MESA participants), performing WGCNA on this
data subset (with module detection) and repeating this
process 200 times. Each of the 200 module assignment
was represented by an unsigned network in which all
transcripts assigned to the same module were connected
by an edge. The Jaccard index [71] was used to evaluate
the similarity between any two networks and is equal to
the number of edges shared by two networks divided by
the total number of edges in present in either network.
Hence, the Jaccard index ranges from O to 1, with larger
values indicating higher similarity between two networks
The values of the Jaccard index for the network con-
structed from the original data and any network ob-
tained from a sub-sampled data set were low with mean
value (across 200 replicates) in the range 0.25 - 0.30. To
increase the stability of the module assignment, we cal-
culated a consensus network composed of those edges
which were present in at least 70% of the 200 networks
constructed from the sub-sampled data sets (no minimum
size for consensus network modules). We then compared
several consensus networks, each based on 200 sub-
samples, resulting in Jaccard index values very near 0.90
and indicating much higher stability between consensus
networks compared with the (in)stability of networks from
individual datasets.

mRNA quantification using RNA seq

Expression levels accessed by microarray were com-
pared to results from RNA-sequencing in the subset
of the monocyte samples (n=373), indicating excel-
lent reproducibility of microarray data (correlations
ranged from 0.45-0.86, median: 0.76). Detailed infor-
mation describing mRNA quantification is provided
in the Additional file 1.
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MCL1 and MRPS12 protein extraction and western
blotting

Following DNA/RNA extraction, protein pellet was pre-
cipitated from RLT Plus buffer (Qiagen, Inc., Hilden,
Germany) with acetone per manufacturer instructions.
Pellet was resuspended in 100 pl modified 4x Laemmli
buffer [72] (4% SDS, 250 mM Tris HCI, no glycerol, no
bromophenol blue, no p-mercaptoethanol) mixed 1:1
with 8 M Urea [73], with SigmaFAST Protease Inhibitor
Cocktail Tablet (Sigma-Aldrich, St. Louis, MO). Samples
were warmed to 55°C, and sonicated 4 x 30 seconds in a
Bioruptor (Diagenode, Denville, NJ). Protein concentra-
tion was determined using bicinchoninic acid microplate
assay (Thermo Scientific, Rockford, IL). Samples were
mixed 1:4 with 5x Loading Buffer Supplement (50% gly-
cerol, 0.02% bromphenol blue, 12.5% [-mercaptoethanol),
separated by SDS-PAGE on NuPage Novex 4-12% Bis-
Tris Midi gels (Life Technologies, Grand Island, NY),
and transferred to Immobilon Fl (Millipore, Billerica,
MA) PVDF membranes. Blots were blocked in non-fat
dry milk and incubated with antibodies to Mcll (Santa
Cruz Biotechnology, Santa Cruz, CA) (clone S-19, 1:500 di-
lution), MRPS12 (Proteintech Group, Chicago, II) (rabbit
polyclonal, catalog #15225-1-AP, 1:333 dilution), and
GAPDH (Ablabs, Vancouver, British Columbia) (clone galr,
1:3000 dilution) overnight at 4°C. Secondary detection was
performed using IRDye 680 and 800 secondary antibodies
(LI-COR, Lincoln, NE), and imaged on an Odyssey Classic
scanner (LI-COR, Lincoln, NE).

Mcl-1 protein quantification: Mcl-1 often appears as a
doublet or triplet in western blot analysis, in agreement
with our own observations. These multiple bands are
thought to occur for a variety of reasons, including: an
alternative initiation site [74], alternative RNA splicing
[75], serine/threonine phosphorylation [76,77], and
perhaps most notably, and proteolytic cleavage of the N-
terminus [74,78,79]. The production, stability, and turn-
over of Mcl-1 variants is diverse, and thus we chose to
focus our quantitation on the dominant, high molecular
weight species (40 kDa), which likely corresponds to the
full length Mcl-1 protein. GAPDH was used as a loading
control because our gene expression analysis showed it
has low variance and no association with age (FDR =
0.32). Individual protein band quantification was per-
formed using Image Studio software (LI-COR, Lincoln,
NE). Target protein content was corrected for the con-
tent of GAPDH in samples.

Mediation analysis

We performed mediation analysis to investigate the hy-
pothesis that age may have an effect on gene expression
mediated through methylation alteration. We used
Structural Equation Modeling (SEM) with bootstrapping
as implemented in the R package lavaan [80] to estimate
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direct and indirect effects (mediated through DNA
methylation) of age on gene expression.

Availability of supporting data

Microarray data presented in this manuscript has
been deposited in the NCBI Gene Expression Omni-
bus (GEO) repository and is accessible through GEO
Series accession number GSE56047. Other supporting
data are included in Additional file 1 and Additional
file 2.
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Additional file 1: Figure S1. Age-associations with the monocyte
transcriptome (page 3). Figure S2. Correlation between co-expression
network modules (page 4). Figure S3. Scatterplot of gene expression
and age for genes in the ‘black’ co-expression network module (page 5).
Figure S4. Correlation between MCLT expression measured by microarray
and RNA-sequencing (page 6). Figure S5. MCL1 expression measured
using Western Blot (page 7). Figure S6. MRPS12 expression measured
using Western Blot (page 8). Figure S7. Comparison of the effect of age
on gene expression in 1,264 monocyte samples compared to results from a
subset of 423 samples (page 9). Table S1. Population characteristics (page 10).
Table S3. Gene set enrichment analysis for age-associated genes in
monocytes from 1,264 MESA participants (page 11). Table S4. Co-expression
network modules associated with age (page 12). Table S14. Gene set
enrichment analysis for age-associated genes in CD4+ T cells and CD14+
monocytes from 423 MESA participants (page 13). Supplementary Methods:
mRNA quantification using RNA seq (page 14-15). Supplementary
References (page 16).

Additional file 2: Table S2. Association between age and expression of
4,502 age-associated genes (FDR < 0.01) in 1,264 monocyte samples (Tab 1).
Table S5. Association between age and expression of 54 oxidative
phosphorylation genes (Tab 2). Table S6. Association between age and
expression of 204 ribosomal genes (Tab 3). Table S7 Association between
age and expression of 51 mitochondrial ribosome genes (Tab 4).

Table S8. Enrichment of transcription factor binding sites (TFBS) among
‘turquoise” module genes (Tab 5). Table S9. Regulators of transcription
assigned to the ‘turquoise’ module negatively correlated with ‘blue” module
expression (Tab 6). Table S10. Age-associated genes harboring cis-
methylation sites associated with age and predicted to mediate the effect of
age on cis-gene expression (Tab 7). Table S11. Gene expression associated
with age (FDR < 0.01) and a pulse pressure (FDR < 0.01) (Tab 8).

Table S12. Gene expression associated with age (FDR < 0.01) in CD4+ T cells
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age associations with gene expression in 423 CD14+ monocyte samples and
in the expanded CD14+ monocyte sample size (n = 1264) (Tab 10).
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