261 research outputs found

    Dysregulated oscillatory connectivity in the visual system in autism spectrum disorder

    Get PDF
    Autism spectrum disorder is increasingly associated with atypical perceptual and sensory symptoms. Here we explore the hypothesis that aberrant sensory processing in autism spectrum disorder could be linked to atypical intra- (local) and interregional (global) brain connectivity. To elucidate oscillatory dynamics and connectivity in the visual domain we used magnetoencephalography and a simple visual grating paradigm with a group of 18 adolescent autistic participants and 18 typically developing control subjects. Both groups showed similar increases in gamma (40-80 Hz) and decreases in alpha (8-13 Hz) frequency power in occipital cortex. However, systematic group differences emerged when analysing intra- and interregional connectivity in detail. First, directed connectivity was estimated using non-parametric Granger causality between visual areas V1 and V4. Feedforward V1-to-V4 connectivity, mediated by gamma oscillations, was equivalent between autism spectrum disorder and control groups, but importantly, feedback V4-to-V1 connectivity, mediated by alpha (8-13 Hz) oscillations, was significantly reduced in the autism spectrum disorder group. This reduction was positively correlated with autistic quotient scores, consistent with an atypical visual hierarchy in autism, characterized by reduced top-down modulation of visual input via alpha-band oscillations. Second, at the local level in V1, coupling of alpha-phase to gamma amplitude (alpha-gamma phase amplitude coupling) was reduced in the autism spectrum disorder group. This implies dysregulated local visual processing, with gamma oscillations decoupled from patterns of wider alpha-band phase synchrony (i.e. reduced phase amplitude coupling), possibly due to an excitation-inhibition imbalance. More generally, these results are in agreement with predictive coding accounts of neurotypical perception and indicate that visual processes in autism are less modulated by contextual feedback information

    Outgassing of Ordinary Chondritic Material and Some of its Implications for the Chemistry of Asteroids, Planets, and Satellites

    Get PDF
    We used chemical equilibrium calculations to model thermal outgassing of ordinary chondritic material as a function of temperature, pressure, and bulk compositions and use our results to discuss outgassing on asteroids and the early Earth. The calculations include ~1,000 solids and gases of the elements Al, C, Ca, Cl, Co, Cr, F, Fe, H, K, Mg, Mn, N, Na, Ni, O, P, S, Si, and Ti. The major outgassed volatiles from ordinary chondritic material are CH4, H2, H2O, N2, and NH3(the latter at conditions where hydrous minerals form). Contrary to widely held assumptions, CO is never the major C-bearing gas during ordinary chondrite metamorphism. The calculated oxygen fugacity (partial pressure) of ordinary chondritic material is close to that of the quartz-fayalite-iron (QFI) buffer. Our results are insensitive to variable total pressure, variable volatile element abundances, and kinetic inhibition of C and N dissolution in Fe metal. Our results predict that Earth's early atmosphere contained CH4, H2, H2O, N2, and NH3; similar to that used in Miller-Urey synthesis of organic compounds.Comment: 72 pages, 17 figures, 3 tables; submitted to Icaru

    Preparation of Group I Introns for Biochemical Studies and Crystallization Assays by Native Affinity Purification

    Get PDF
    The study of functional RNAs of various sizes and structures requires efficient methods for their synthesis and purification. Here, 23 group I intron variants ranging in length from 246 to 341 nucleotides—some containing exons—were subjected to a native purification technique previously applied only to shorter RNAs (<160 nucleotides). For the RNAs containing both exons, we adjusted the original purification protocol to allow for purification of radiolabeled molecules. The resulting RNAs were used in folding assays on native gel electrophoresis and in self-splicing assays. The intron-only RNAs were subjected to the regular native purification scheme, assayed for folding and employed in crystallization screens. All RNAs that contained a 3′ overhang of one nucleotide were efficiently cleaved off from the support and were at least 90% pure after the non-denaturing purification. A representative subset of these RNAs was shown to be folded and self-splicing after purification. Additionally, crystals were grown for a 286 nucleotide long variant of the Clostridium botulinum intron. These results demonstrate the suitability of the native affinity purification method for the preparation of group I introns. We hope these findings will stimulate a broader application of this strategy to the preparation of other large RNA molecules

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Autologous chondrocyte implantation in the knee : systematic review and economic evaluation

    Get PDF
    Background: The surfaces of the bones in the knee are covered with articular cartilage, a rubber-like substance that is very smooth, allowing frictionless movement in the joint and acting as a shock absorber. The cells that form the cartilage are called chondrocytes. Natural cartilage is called hyaline cartilage. Articular cartilage has very little capacity for self-repair, so damage may be permanent. Various methods have been used to try to repair cartilage. Autologous chondrocyte implantation (ACI) involves laboratory culture of cartilage-producing cells from the knee and then implanting them into the chondral defect. Objective: To assess the clinical effectiveness and cost-effectiveness of ACI in chondral defects in the knee, compared with microfracture (MF). Data sources: A broad search was done in MEDLINE, EMBASE, The Cochrane Library, NHS Economic Evaluation Database and Web of Science, for studies published since the last Health Technology Assessment review. Review methods: Systematic review of recent reviews, trials, long-term observational studies and economic evaluations of the use of ACI and MF for repairing symptomatic articular cartilage defects of the knee. A new economic model was constructed. Submissions from two manufacturers and the ACTIVE (Autologous Chondrocyte Transplantation/Implantation Versus Existing Treatment) trial group were reviewed. Survival analysis was based on long-term observational studies. Results: Four randomised controlled trials (RCTs) published since the last appraisal provided evidence on the efficacy of ACI. The SUMMIT (Superiority of Matrix-induced autologous chondrocyte implant versus Microfracture for Treatment of symptomatic articular cartilage defects) trial compared matrix-applied chondrocyte implantation (MACI®) against MF. The TIG/ACT/01/2000 (TIG/ACT) trial compared ACI with characterised chondrocytes against MF. The ACTIVE trial compared several forms of ACI against standard treatments, mainly MF. In the SUMMIT trial, improvements in knee injury and osteoarthritis outcome scores (KOOSs), and the proportion of responders, were greater in the MACI group than in the MF group. In the TIG/ACT trial there was improvement in the KOOS at 60 months, but no difference between ACI and MF overall. Patients with onset of symptoms < 3 years’ duration did better with ACI. Results from ACTIVE have not yet been published. Survival analysis suggests that long-term results are better with ACI than with MF. Economic modelling suggested that ACI was cost-effective compared with MF across a range of scenarios. Limitations: The main limitation is the lack of RCT data beyond 5 years of follow-up. A second is that the techniques of ACI are evolving, so long-term data come from trials using forms of ACI that are now superseded. In the modelling, we therefore assumed that durability of cartilage repair as seen in studies of older forms of ACI could be applied in modelling of newer forms. A third is that the high list prices of chondrocytes are reduced by confidential discounting. The main research needs are for longer-term follow-up and for trials of the next generation of ACI. Conclusions: The evidence base for ACI has improved since the last appraisal by the National Institute for Health and Care Excellence. In most analyses, the incremental cost-effectiveness ratios for ACI compared with MF appear to be within a range usually considered acceptable. Research is needed into long-term results of new forms of ACI

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Autologous chondrocyte implantation in the knee: systematic review and economic evaluation

    Full text link
    corecore