211 research outputs found

    Universal expansion of vortex clusters in a dissipative two-dimensional superfluid

    Full text link
    A large ensemble of quantum vortices in a superfluid may itself be treated as a novel kind of fluid that exhibits anomalous hydrodynamics. Here we consider the dynamics of vortex clusters with thermal friction, and present an analytic solution that uncovers a new universality class in the out-of-equilibrium dynamics of dissipative superfluids. We find that the long-time dynamics of the vorticity distribution is an expanding Rankine vortex (i.e.~top-hat distribution) independent of initial conditions. This highlights a fundamentally different decay process to classical fluids, where the Rankine vortex is forbidden by viscous diffusion. Numerical simulations of large ensembles of point vortices confirm the universal expansion dynamics, and further reveal the emergence of a frustrated lattice structure marked by strong correlations. We present experimental results in a quasi-two-dimensional Bose-Einstein condensate that are in excellent agreement with the vortex fluid theory predictions, demonstrating that the signatures of vortex fluid theory can be observed with as few as N11N\sim 11 vortices. Our theoretical, numerical, and experimental results establish the validity of the vortex fluid theory for superfluid systems.Comment: V1: 6 pages, 3 figures in main text. 5 pages, 5 figures in supplemental material. V2: Updated in response to reviewer comments: Improved introduction and discussion, additional simulation data provided in supplemental material

    Emergence of off-axis equilibria in a quantum vortex gas

    Full text link
    We experimentally study the emergence of high-energy equilibrium states in a chiral vortex gas of like-circulation vortices realized within a disk-shaped atomic Bose-Einstein condensate. In contrast to the familiar triangular Abrikosov lattice, the lowest-energy state of the superfluid in a rotating frame, we observe the formation of rotating vortex equilibria that are highly disordered and have significant energy per vortex. Experimental stirring protocols realize equilibrium states at both positive and negative absolute temperatures of the vortex gas. At sufficiently high energies the system exhibits a symmetry breaking transition, resulting in an off-axis equilibrium phase that no longer shares the symmetry of the container. By initializing vortices in a non-equilibrium distribution with sufficient energy, relaxation to equilibrium is observed within experimental timescales and an off-axis equilibrium state emerges at negative absolute temperature. The observed equilibria are in close agreement with mean field theory of the microcanonical ensemble of the vortex gas.Comment: V1: 13 pages, 6 figures, 5 in main tex

    Turbulent relaxation to equilibrium in a two-dimensional quantum vortex gas

    Get PDF
    We experimentally study emergence of microcanonical equilibrium states in the turbulent relaxation dynamics of a two-dimensional chiral vortex gas. Same-sign vortices are injected into a quasi-two-dimensional disk-shaped atomic Bose-Einstein condensate using a range of mechanical stirring protocols. The resulting long-time vortex distributions are found to be in excellent agreement with the mean-field Poisson-Boltzmann equation for the system describing the microcanonical ensemble at fixed energy H and angular momentum M. The equilibrium states are characterized by the corresponding thermodynamic variables of inverse temperature β and rotation frequency ω. We are able to realize equilibria spanning the full phase diagram of the vortex gas, including on-axis states near zero-temperature, infinite temperature, and negative absolute temperatures. At sufficiently high energies the system exhibits a symmetry breaking transition, resulting in an off-axis equilibrium phase at negative absolute temperature that no longer shares the symmetry of the container. We introduce a point vortex model with phenomenological damping and noise that is able to quantitatively reproduce the equilibration dynamics.We experimentally study emergence of microcanonical equilibrium states in the turbulent relaxation dynamics of a two-dimensional chiral vortex gas. Same-sign vortices are injected into a quasi-two-dimensional disk-shaped atomic Bose-Einstein condensate using a range of mechanical stirring protocols. The resulting long-time vortex distributions are found to be in excellent agreement with the mean-field Poisson-Boltzmann equation for the system describing the microcanonical ensemble at fixed energy H and angular momentum M. The equilibrium states are characterized by the corresponding thermodynamic variables of inverse temperature β and rotation frequency ω. We are able to realize equilibria spanning the full phase diagram of the vortex gas, including on-axis states near zero-temperature, infinite temperature, and negative absolute temperatures. At sufficiently high energies the system exhibits a symmetry breaking transition, resulting in an off-axis equilibrium phase at negative absolute temperature that no longer shares the symmetry of the container. We introduce a point vortex model with phenomenological damping and noise that is able to quantitatively reproduce the equilibration dynamics

    Australasian Malignant PLeural Effusion (AMPLE)-3 trial: Study protocol for a multi-centre randomised study comparing indwelling pleural catheter (±talc pleurodesis) versus video-assisted thoracoscopic surgery for management of malignant pleural effusion

    Get PDF
    Introduction: Malignant pleural effusions (MPEs) are common. MPE causes significant breathlessness and impairs quality of life. Indwelling pleural catheters (IPC) allow ambulatory drainage and reduce hospital days and re-intervention rates when compared to standard talc slurry pleurodesis. Daily drainage accelerates pleurodesis, and talc instillation via the IPC has been proven feasible and safe. Surgical pleurodesis via video-assisted thoracoscopic surgery (VATS) is considered a one-off intervention for MPE and is often recommended to patients who are fit for surgery. The AMPLE-3 trial is the first randomised trial to compare IPC (±talc pleurodesis) and VATS pleurodesis in those who are fit for surgery. Methods and analysis: A multi-centre, open-labelled randomised trial of patients with symptomatic MPE, expected survival of ≥ 6 months and good performance status randomised 1:1 to either IPC or VATS pleurodesis. Participant randomisation will be minimised for (i) cancer type (mesothelioma vs non-mesothelioma); (ii) previous pleurodesis (vs not); and (iii) trapped lung, if known (vs not). Primary outcome is the need for further ipsilateral pleural interventions over 12 months or until death, if sooner. Secondary outcomes include days in hospital, quality of life (QoL) measures, physical activity levels, safety profile, health economics, adverse events, and survival. The trial will recruit 158 participants who will be followed up for 12 months. Ethics and dissemination: Sir Charles Gairdner and Osborne Park Health Care Group (HREC) has approved the study (reference: RGS356). Results will be published in peer-reviewed journals and presented at scientific meetings. Discussion: Both IPC and VATS are commonly used procedures for MPE. The AMPLE-3 trial will provide data to help define the merits and shortcomings of these procedures and inform future clinical care algorithms. Trial registration: Australia New Zealand Clinical Trial Registry ACTRN12618001013257. Registered on 18 June 2018. Protocol version: Version 3.00/4.02.1

    The association of health literacy with adherence in older 2 adults, and its role in interventions: a systematic meta-review

    Get PDF
    Background: Low health literacy is a common problem among older adults. It is often suggested to be associated with poor adherence. This suggested association implies a need for effective adherence interventions in low health literate people. However, previous reviews show mixed results on the association between low health literacy and poor adherence. A systematic meta-review of systematic reviews was conducted to study the association between health literacy and adherence in adults above the age of 50. Evidence for the effectiveness of adherence interventions among adults in this older age group with low health literacy was also explored. Methods: Eight electronic databases (MEDLINE, ERIC, EMBASE, PsycINFO, CINAHL, DARE, the Cochrane Library, and Web of Knowledge) were searched using a variety of keywords regarding health literacy and adherence. Additionally, references of identified articles were checked. Systematic reviews were included if they assessed the association between health literacy and adherence or evaluated the effectiveness of interventions to improve adherence in adults with low health literacy. The AMSTAR tool was used to assess the quality of the included reviews. The selection procedure, data-extraction, and quality assessment were performed by two independent reviewers. Seventeen reviews were selected for inclusion. Results: Reviews varied widely in quality. Both reviews of high and low quality found only weak or mixed associations between health literacy and adherence among older adults. Reviews report on seven studies that assess the effectiveness of adherence interventions among low health literate older adults. The results suggest that some adherence interventions are effective for this group. The interventions described in the reviews focused mainly on education and on lowering the health literacy demands of adherence instructions. No conclusions could be drawn about which type of intervention could be most beneficial for this population. Conclusions: Evidence on the association between health literacy and adherence in older adults is relatively weak. Adherence interventions are potentially effective for the vulnerable population of older adults with low levels of health literacy, but the evidence on this topic is limited. Further research is needed on the association between health literacy and general health behavior, and on the effectiveness of interventions

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s = 8 TeV with the ATLAS detector (vol 75, 299, 2015)

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √s=8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT&gt;120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT&gt;150 GeV and EmissT&gt;700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s = 8 TeV with the ATLAS detector (vol 75, 299, 2015)

    Get PDF

    Search for anomalous couplings in the W tb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector

    Get PDF
    The electroweak production and subsequent decay of single top quarks is determined by the properties of the Wtb vertex. This vertex can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the t -channel constrains these parameters simultaneously. The analysis described in this paper uses 4.6 fb−1 of proton-proton collision data at √s =7 TeV collected with the ATLAS detector at the LHC. Two parameters are measured simultaneously in this analysis. The fraction f 1 of decays containing transversely polarised W bosons is measured to be 0.37 ± 0.07 (stat.⊕syst.). The phase δ − between amplitudes for transversely and longitudinally polarised W bosons recoiling against left-handed b-quarks is measured to be −0.014π ± 0.036π (stat.⊕syst.). The correlation in the measurement of these parameters is 0.15. These values result in two-dimensional limits at the 95% confidence level on the ratio of the complex coupling parameters g R and V L, yielding Re[g R /V L] ∈ [−0.36, 0.10] and Im[g R /V L] ∈ [−0.17, 0.23] with a correlation of 0.11. The results are in good agreement with the predictions of the Standard Model

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity
    corecore