5 research outputs found

    Chromatin differentiation between Theobroma cacao L. and T. grandiflorum Schum

    Get PDF
    A comparative analysis of mitotic chromosomes of Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) was performed aiming to identify cytological differences between the two most important species of this genus. Both species have symmetric karyotypes, with 2n = 20 metacentric chromosomes ranging in size from 2.00 to 1.19 μm (cacao) and from 2.21 to 1.15 μm (cupuaçu). The interphase nuclei of both species were of the arreticulate type, displaying up to 20 chromocentres, which were more regularly shaped in cacao than in cupuaçu. Prophase chromosomes of both species were more condensed in the proximal region, sometimes including the whole short arm. Both species exhibited only one pair of terminal heterochromatic bands, positively stained with chromomycin A 3 , which co-localized with the single 45S rDNA site. Each karyotype displayed a single 5S rDNA site in the proximal region of another chromosome pair. Heterochromatic bands were also observed on the centromeric/pericentromeric regions of all 20 chromosomes of cacao after C-banding followed by Giemsa or DAPI staining, whereas in cupuaçu they were never detected. These data suggest that the chromosomes of both species have been largely conserved and their pericentromeric chromatin is the only citologically differentiated region

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore