12 research outputs found

    A c.3037G > A mutation in FBN1 gene causing Marfan syndrome with an atypically severe phenotype.

    Get PDF
    Marfan syndrome is a pleiotropic connective tissue disease inherited as an autosomal dominant trait, mostly caused by mutations in the FBN1 gene, which is located on chromosome 15q21.1 and encoding fibrillin 1. We report a case of Marfan syndrome presenting with severe ocular and systemic manifestations, such as cardiac congenital anomalies. The patient underwent a multidisciplinary approach and his clinical diagnosis was associated with a c.3037G > A mutation in the FBN1 gene. Identification of this genetic alteration should instigate a prompt multidisciplinary assessment and monitoring, in order to prevent devastating consequences such as cardiac and ocular phenotype. Molecular modeling of the mutation highlighted the importance of the preservation of the calcium-dependent structure of an epidermal -growth-factor-like domain of fibrillin-1 and consequently the microfibrillar formation process. This report aims to highlight the importance of an early clinical and molecular diagnosis and once more, the importance of the multidisciplinary approach of this genetic entity

    Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits

    Get PDF
    MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade gathers AGAMOUS-like genes which are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3 , both displaying high expression levels in seeds and in central tissues of young fruits. The potential effects of Sl-AGL11 on fruit development were addressed through RNAi silencing and ectopic expression strategies. Sl-AGL11-down-regulated tomato lines failed to show obvious phenotypes except a slight reduction in seed size. In contrast, Sl-AGL11 overexpression triggered dramatic modifications of flower and fruit structure that include: the conversion of sepals into fleshy organs undergoing ethylene-dependent ripening, a placenta hypertrophy to the detriment of locular space, starch and sugar accumulation, and an extreme softening that occurs well before the onset of ripening. RNA-Seq transcriptomic profiling high-lighted substantial metabolic reprogramming occurring in sepals and fruits, with major impacts on cell wall-related genes. While several Sl-AGL11-related phenotypes are reminiscent of class C MADS-box genes (TAG1 and TAGL1), the modifications observed on the placenta and cell wall and the Sl-AGL11 expression pattern suggest an action of this class D MADS-box factor on early fleshy fruit development

    Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth

    Get PDF
    Whereas the interplay of multiple hormones is essential for most plant developmental processes, the key integrating molecular players remain largely undiscovered or uncharacterized. It is shown here that a member of the tomato auxin/indole-3-acetic acid (Aux/IAA) gene family, Sl-IAA3, intersects the auxin and ethylene signal transduction pathways. Aux/IAA genes encode short-lived transcriptional regulators central to the control of auxin responses. Their functions have been defined primarily by dominant, gain-of-function mutant alleles in Arabidopsis. The Sl-IAA3 gene encodes a nuclear-targeted protein that can repress transcription from auxin-responsive promoters. Sl-IAA3 expression is auxin and ethylene dependent, is regulated on a tight tissue-specific basis, and is associated with tissues undergoing differential growth such as in epinastic petioles and apical hook. Antisense down-regulation of Sl-IAA3 results in auxin and ethylene-related phenotypes, including altered apical dominance, lower auxin sensitivity, exaggerated apical hook curvature in the dark and reduced petiole epinasty in the light. The results provide novel insights into the roles of Aux/IAAs and position the Sl-IAA3 protein at the crossroads of auxin and ethylene signalling in tomato

    Chromatin dynamics during interphase and cell division:similarities and differences between model and crop plants

    Get PDF
    Genetic information in the cell nucleus controls organismal development, responses to the environment and finally ensures own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organisation of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to the genome size, ploidy and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organisation and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits

    Light enhanced amino acid uptake by dominant bacterioplankton groups in surface waters of the Atlantic Ocean

    No full text
    S-35-Methionine and H-3-leucine bioassay tracer experiments were conducted on two meridional transatlantic cruises to assess whether dominant planktonic microorganisms use visible sunlight to enhance uptake of these organic molecules at ambient concentrations. The two numerically dominant groups of oceanic bacterioplankton were Prochlorococcus cyanobacteria and bacteria with low nucleic acid (LNA) content, comprising 60% SAR11-related cells. The results of flow cytometric sorting of labelled bacterioplankton cells showed that when incubated in the light, Prochlorococcus and LNA bacteria increased their uptake of amino acids on average by 50% and 23%, respectively, compared with those incubated in the dark. Amino acid uptake of Synechococcus cyanobacteria was also enhanced by visible light, but bacteria with high nucleic acid content showed no light stimulation. Additionally, differential uptake of the two amino acids by the Prochlorococcus and LNA cells was observed. The populations of these two types of cells on average completely accounted for the determined 22% light enhancement of amino acid uptake by the total bacterioplankton community, suggesting a plausible way of harnessing light energy for selectively transporting scarce nutrients that could explain the numerical dominance of these groups in situ

    Dementia Risk in A Diverse Population: A Single-Region Nested Case-Control Study in the East End of London

    Get PDF
    BACKGROUND: Most evidence about dementia risk comes from relatively affluent people of White European ancestry. We aimed to determine the association between ethnicity, area level socioeconomic deprivation and dementia risk, and the extent to which variation in risk might be attributable to known modifiable clinical risk factors and health behaviours. METHODS: In this nested case-control study, we analysed data from primary care medical records of a population of 1,016,277 from four inner East London boroughs, United Kingdom, collected between 2009 and 2018. The outcome measures were odds ratios for dementia according to ethnicity and deprivation, before and after the addition of major modifiable risk factors for dementia; and weighted population attributable risk for comparison between individual risk factors. FINDINGS: We identified 4137 dementia cases and 15,754 matched controls (mean age for cases and controls were 80·7 years, (SD 8·7); 81·3 years, (SD 8·9) respectively, range 27–103). Black and South Asian ethnicity were both associated with increased risk of dementia relative to White (odds ratios [95% CI]: Black 1·43 [1·31–1·56]; South Asian 1.17 [1·06–1·29]). Area-level deprivation was independently associated with an increased risk of dementia in a dose-dependent manner. Black and South Asian ethnicity were both associated with a younger age at dementia diagnosis (odds ratios [95%CI]: 0·70 [0·61–0·80] and 0·55 [0·47–0·65], respectively). Population attributable risk was higher for ethnicity (9·7%) and deprivation (11·7%) than for any established modifiable risk factor in this population. INTERPRETATION: Ethnicity and area-level deprivation are independently associated with dementia risk in East London. This effect may not be attributable to the effect of known risk factors. FUNDING: Barts Charity (MGU0366)

    Metaproteomic and metagenomic analyses of defined oceanic microbial populations using microwave cell fixation and flow cytometric sorting

    No full text
    A major obstacle in the molecular investigation of natural, especially oceanic, microbial cells is their adequate preservation for further land-based molecular analyses. Here, we examined the use of microwaves for cell fixation before high-speed flow cytometric sorting to define the metaproteomes and metagenomes of key microbial populations. The microwave fixation procedure was established using cultures of Synechococcus cyanobacteria, the photosynthetic eukaryote Micromonas pusilla and the gammaproteobacterium Halomonas variabilis. Shotgun proteomic analyses showed that the profile of microwave-fixed and -unfixed Synechococcus sp. WH8102 cells was the same, and hence proteome identification of microwave-fixed sorted cells by nanoLC-MS/MS is possible. Microwave-fixed flow-sorted Synechococcus cells can also be successfully used for whole-genome amplification and fosmid library construction. We then carried out successful metaproteomic and metagenomic analyses of microwave-fixed Synechococcus cells flow sorted from concentrates of microbial cells, collected in the North Atlantic Ocean. Thus, the microwave fixation procedure developed appears to be useful for molecular studies of microbial populations in aquatic ecosystems

    Vertical structure of small eukaryotes in three lakes that differ by their trophic status : a quantitative approach

    No full text
    In lakes, the diversity of eukaryotic picoplankton has been recently studied by the analysis of 18S ribosomal RNA gene sequences; however, quantitative data are rare. In this study, the vertical structure and abundance of the small eukaryotic size fraction (0.2-5 mu m) were investigated in three lakes by tyramide signal amplification-fluorescent in situ hybridization targeting six phylogenetic groups: Chlorophyta, Haptophyta, Cercozoa, LKM11, Perkinsozoa and fungi. The groups targeted in this study are found in all lakes; however, both the abundance and structure of small eukaryotes are dependent on the system's productivity and depth. These data highlighted the presence of Chlorophyta contributing on an average to 19.3%, 14.7% and 41.2% of total small eukaryotes in lakes Bourget, Aydat and Pavin, respectively. This study also revealed the unexpected importance of Haptophyta, reaching 62.8% of eukaryotes in the euphotic zone of Lake Bourget. The high proportions of these pigmented cells highlight the underestimation of these groups by PCR-based methods. The presence of pigmented Chlorophyta in the deepest zones of the lakes suggests a mixotrophic behaviour of these taxa. We also confirmed the presence of putative parasites such as Perkinsozoa (5.1% of small eukaryotes in Lake Pavin and Bourget) and, with lower abundances, fungi (targeted by the MY1574 probe). Cells targeted by LKM11 probes represented the second group of abundance within heterotrophs. Open questions regarding the functional roles of the targeted groups arise from this study, especially regarding parasitism and mixotrophy, which are interactions poorly taken into account in planktonic food web models. The ISME Journal (2010) 4, 1509-1519; doi:10.1038/ismej.2010.83; published online 24 June 201

    Beneficial effects of vitamin D on neurodegeneration and mental diseases|RÎles bénéfiques de la vitamine D sur la neurodégénérescence et les troubles mentaux

    No full text
    corecore