67 research outputs found

    Atividade do peptídeo antimicrobiano P34 contra o alfaherpesvírus bovino tipo 1

    Get PDF
    Previous studies have demonstrated the antimicrobial activity of the peptide P34. In this study, the antiviral potential of P34 and the in vitro mechanism of action were investigated against bovine alphaherpesvirus type 1 (BoHV1). P34 exhibited low toxicity, a high selectivity index (22.9) and a percentage of inhibition of up to 100% in MDBK cells. Results from antiviral assays indicated that P34 did not interact with cell receptors, but it was able to inhibit the viral penetration immediately after pre-adsorption. In addition, BoHV1 growth curve in MDBK cells in the presence of P34 revealed a significant reduction in virus titer only 8h post-infection, also suggesting an important role at late stages of the replicative cycle. Virucidal effect was observed only in cytotoxic concentrations of the peptide. These findings showed that the antimicrobial peptide P34 may be considered as a potential novel inhibitor of in vitro herpesviruses and must encourage further investigation of its antiherpetic activity in animal models as well as against a wide spectrum of viruses.A atividade antimicrobiana do peptídeo P34 já foi previamente demonstrada. Neste estudo, o potencial antiviral do P34 e o mecanismo de ação in vitro contra o alfaherpesvírus bovino tipo 1 (BoHV1) foram investigados. O P34 exibiu baixa toxicidade, alto índice de seletividade (22.9) e percentagem de inibição viral de até 100% em células MDBK. Os resultados dos ensaios antivirais indicaram que não interage com receptores celulares, mas é capaz de inibir a penetração viral, imediatamente após a pré-adsorção. Além disso, a curva de crescimento do BoHV1 em células MDBK na presença do P34 revelou uma significativa redução no título somente após 8h de infecção, sugerindo também uma importante atividade do peptídeo nas fases finais do ciclo replicativo. Efeito virucida frente / BoHV1 foi observado apenas em concentrações citotóxicas do peptídeo. Os dados obtidos indicam que o peptídeo antimicrobiano P34 pode ser considerado um potencial composto inibidor de herpesvírus, in vitro, e estimulam posteriores investigações sobre sua atividade anti-herpética em modelos animais, bem como contra outros vírus

    Inibição do vírus da arterite equina por um peptídeo antimicrobiano produzido pelo Bacillus sp. P34

    Get PDF
    P34 is an antimicrobial peptide produced by Bacillus sp. P34, isolated from the intestinal contents of a fish from the Amazon basin. This peptide showed antibacterial properties against Gram-positive and Gram-negative bacteria and was characterized as a bacteriocin like substance. It was demonstrated that the peptide P34 exhibited antiviral activity against feline herpesvirus type 1 in vitro. The aim of this work was to evaluate P34 for its antiviral properties in vitro, using RK 13 cells, against the equine arteritis virus, since it has no specific treatment and a variable proportion of stallions may become persistently infected. The results obtained show that P34 exerts antiviral and virucidal activities against equine arteritis virus, probably in the viral envelope. The antiviral assays performed showed that P34 reduces significantly the viral titers of treated cell cultures. The mechanism of action of P34 seems to be time/temperature-dependent. This peptide tends to be a promising antiviral compound for the prevention and treatment of arteriviral infections since it has a high therapeutic index. However, more detailed studies must be performed to address the exact step of viral infection where P34 acts, in order to use this peptide as an antiviral drug in vivo in the future.P34 é um peptídeo antimicrobiano produzido pelo Bacillus sp. P34, isolado do conteúdo intestinal de um peixe na Bacia Amazônica. Esse peptídeo demonstrou propriedades antibacterianas contra bactérias Gram-positivas e Gram-negativas e foi caracterizado como uma substância do tipo bacteriocina. Foi demonstrado que o peptídeo P34 exibiu atividade antiviral contra o herpesvírus felino tipo 1 in vitro. O objetivo deste trabalho foi avaliar o P34 in vitro, em cultivo de células RK 13, contra o vírus da arterite equina, uma vez que não há tratamento específico e uma variável proporção de garanhões pode permanecer persistentemente infectada. Os resultados obtidos mostram que o peptídeo exerce atividade antiviral e virucida contra o vírus da arterite equina, agindo provavelmente no envelope viral. Os ensaios antivirais realizados demonstraram que o P34 reduz significativamente os títulos do vírus nas células infectadas e tratadas. O mecanismo de ação do P34 parece ser tempo/temperatura dependente. Esse peptídeo tende a ser um antiviral promissor para o tratamento e a prevenção das infecções por arterivírus, tendo em vista que ele possui um alto índice terapêutico. Contudo, estudos mais detalhados devem ser realizados para precisar a etapa exata da infecção viral em que o P34 age, para que ele possa ser usado como antiviral in vivo no futuro

    p53 Transactivation and the Impact of Mutations, Cofactors and Small Molecules Using a Simplified Yeast-Based Screening System

    Get PDF
    The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4. promoter, ii) single copy, chromosomally located p53-responsive and control luminescence reporters, iii) enhanced chemical uptake using modified ABC-transporters, iv) small-volume formats for treatment and dual-luciferase assays, and v) opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1.We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Long-term thermal sensitivity of Earth’s tropical forests

    Get PDF
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
    corecore