31 research outputs found

    Evolution of Low- and Intermediate-Mass Stars with [Fe/H] <= -2.5

    Full text link
    We present extensive sets of stellar models for 0.8-9.0Msun in mass and -5 <= [Fe/H] <= -2 and Z = 0 in metallicity. The present work focuses on the evolutionary characteristics of hydrogen mixing into the He-flash convective zones during the core and shell He flashes which occurs for the models with [Fe/H] <~ -2.5. Evolution is followed from the zero age MS to the TPAGB phase including the hydrogen engulfment by the He-flash convection during the RGB or AGB phase. There exist various types of mixing episodes of how the H mixing sets in and how it affects the final abundances at the surface. In particular, we find H ingestion events without dredge-ups that enables repeated neutron-capture nucleosynthesis in the He flash convective zones with 13 C(a,n)16 O as neutron source. For Z = 0, the mixing and dredge-up processes vary with the initial mass, which results in different final abundances in the surface. We investigate the occurrence of these events for various initial mass and metallicity to find the metallicity dependence for the He-flash driven deep mixing (He-FDDM) and also for the third dredge-up (TDU) events. In our models, we find He-FDDM for M <= 3Msun for Z = 0 and for M <~ 2Msun for -5 <~ [Fe/H] <~ -3. On the other hand, the occurrence of the TDU is limited to the mass range of ~1.5Msun to ~5Msun for [Fe/H] = -3, which narrows with decreasing metallicity. The paper also discusses the implications of the results of model computations for observations. We compared the abundance pattern of CNO abundances with observed metal-poor stars. The origins of most iron-deficient stars are discussed by assuming that these stars are affected by binary mass transfer. We also point out the existence of a blue horizontal branch for -4 <~ [Fe/H] <~ -2.5.Comment: 19 pages, 12 figures, accepted by MNRA

    Properties of stellar generations in Globular Clusters and relations with global parameters

    Full text link
    ABRIDGED) We revise the formation of Galactic GCs by adding the detailed chemical composition of their different stellar generations (from 1200 giants in 19 GCs) to their global parameters. We propose to identify as GCs those showing the Na-O anticorrelation, and we classify the GCs according to kinematics and location in the Galaxy in disk/bulge, inner, and outer halo. We find that the LF of GCs is fairly independent of their population, suggesting that it is imprinted by the formation mechanism, and only marginally affected by the ensuing evolution. We show that a large fraction of the primordial population should have been lost by the proto-GCs. The extremely low Al abundances found for the primordial population of massive GCs indicate a very fast enrichment process before the formation of the primordial population. We suggest a scenario for the formation of GCs including at least 3 main phases: i) the formation of a precursor population (likely due to the interaction of cosmological structures similar to those leading to dwarf spheroidals, but residing at smaller Rgc, with the early Galaxy or with other structures), ii) which triggers a large episode of star formation (the primordial population), and iii) the formation of the current GC, mainly within a cooling flow formed by the slow winds of a fraction of the primordial population. The precursor population is very effective in raising the metal content in massive and/or metal poor (mainly halo) clusters, while its role is minor in small and/or metal rich (mainly disk) ones. Finally, we use PCA and multivariate relations to study the phase of metal-enrichment from 1st to 2nd generation. Most of the chemical signatures of GCs may be ascribed to a few parameters, the most important being [Fe/H], mass, and age of the cluster, with the location within the Galaxy also playing some role.Comment: 24 pages (+2 pages of bibliography and 5 of Appendix), 19 figures, accepted for publication on Astronomy and Astrophysic

    The Youngest Victims: Children and Youth Affected by War

    Get PDF
    In 1989, the United Nation Convention on the Rights of the Child declared, “[state parties] shall take all feasible measures to ensure protection and care of children who are affected by an armed conflict.” In addition to attempting to secure the welfare of children in armed conflict, the Convention went on to ban the recruitment and deployment of children during armed conflict. Despite the vast majority of sovereign nations signing and ratifying this agreement, this treaty, unfortunately, has not prevented children and youth from witnessing, becoming victims of, or participating in political, ethnic, religious, and cultural violence across the past three decades. This chapter offers an “ecological perspective” on the psychosocial consequences of exposure to the trauma of war-related violence and social disruption

    Corporate promises and corporate performance

    No full text
    Positive corporate cultures can make a significant contribution to corporate performance. The issue for senior management is how they may be engendered. This paper replies to an earlier paper in EMJ describing Audi's method of tackling the issue, highlighting some more general points and cautioning against a simplistic approach. In particular, it emphasises that corporate performance itself will predominantly determine both the corporate culture and the corporate image. Therefore, whatever slogans and other devices may be employed in efforts to create either, actions speak louder than words. Accordingly, management must create the conditions under which a positive corporate culture can emerge. Management actions, particularly by example and making sure the necessary structures exist within the organisation, ensure that the words take on meaning. As corporate promises are met within the organisation and employee expectations realised, those outside the organisation will find that it is "delivering the goods" and this will be reflected in the corporate image. So corporate performance underlies both the corporate culture and the corporate image. It is all too tempting but unrealistic to think they may be created without due regard to performance.

    The evolution of isotope ratios in the Milky Way Galaxy

    Get PDF
    Isotope ratios have opened a new window into the study of the details of stellar evolution, supernovae and galactic chemical evolution. We present the evolution of the isotope ratios of elemental abundances (from C to Zn) in the solar neighbourhood, bulge, halo and thick disc, using chemical evolution models with updated yields of asymptotic giant branch (AGB) stars and core-collapse supernovae. The evolutionary history of each element is different owing to the effects of the initial progenitor mass and metallicity on element production. In the bulge and thick disc the star formation time-scale is shorter than in the solar neighbourhood, leading to higher [alpha/Fe] ratios. Likewise, the smaller contribution from Type Ia supernovae in these regions leads to lower [Mn/Fe] ratios. Also in the bulge, the abundances of [(Na, Al, P, Cl, K, Sc, Cu, Zn)/Fe] are higher because of the effect of metallicity on element production from core-collapse supernovae. According to our predictions, it is possible to find metal-rich stars ([Fe/H] greater than or similar to -1) that formed in the early Universe as a result of rapid star formation. The chemical enrichment time-scale of the halo is longer than in the solar neighbourhood, and consequently the ratios of [(C, F)/Fe] and C-12/C-13 are higher owing to a significant contribution from low-mass AGB stars. While the [alpha/Fe] and [Mn/Fe] ratios are the same as in the solar neighbourhood, the [(Na, Al, P, Cl, K, Sc, Cu, Zn)/Fe] ratios are predicted to be lower. Furthermore, we predict that isotope ratios such as Mg-24/Mg-25,Mg-26 are larger because of the contribution from low-metallicity supernovae. Using isotopic ratios, it is possible to select stars that formed in a system with a low chemical enrichment efficiency such as the satellite galaxies that were accreted on to our own Milky Way Galaxy.Peer reviewe
    corecore