751 research outputs found

    Reward, risk and response in Australian cooperative research centres

    Full text link

    The importance of considering community-level effects when selecting insecticidal malaria vector products

    Get PDF
    BACKGROUND\ud \ud Insecticide treatment of nets, curtains or walls and ceilings of houses represent the primary means for malaria prevention worldwide. Direct personal protection of individuals and households arises from deterrent and insecticidal activities which divert or kill mosquitoes before they can feed. However, at high coverage, community-level reductions of mosquito density and survival prevent more transmission exposure than the personal protection acquired by using a net or living in a sprayed house.\ud \ud METHODS\ud \ud A process-explicit simulation of malaria transmission was applied to results of 4 recent Phase II experimental hut trials comparing a new mosaic long-lasting insecticidal net (LLIN) which combines deltamethrin and piperonyl butoxide with another LLIN product by the same manufacturer relying on deltamethrin alone.\ud \ud RESULTS\ud \ud Direct estimates of mean personal protection against insecticide-resistant vectors in Vietnam, Cameroon, Burkina Faso and Benin revealed no clear advantage for combination LLINs over deltamethrin-only LLINs (P = 0.973) unless both types of nets were extensively washed (Relative mean entomologic inoculation rate (EIR) ± standard error of the mean (SEM) for users of combination nets compared to users of deltamethrin only nets = 0.853 ± 0.056, P = 0.008). However, simulations of impact at high coverage (80% use) predicted consistently better impact for the combination net across all four sites (Relative mean EIR ± SEM in communities with combination nets, compared with those using deltamethrin only nets = 0.613 ± 0.076, P < 0.001), regardless of whether the nets were washed or not (P = 0.467). Nevertheless, the degree of advantage obtained with the combination varied substantially between sites and their associated resistant vector populations.\ud \ud CONCLUSION\ud \ud Process-explicit simulations of community-level protection, parameterized using locally-relevant experimental hut studies, should be explicitly considered when choosing vector control products for large-scale epidemiological trials or public health programme procurement, particularly as growing insecticide resistance necessitates the use of multiple active ingredients

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe
    corecore