79 research outputs found

    Stellar explosion in the weak field approximation of the Brans-Dicke theory

    Full text link
    We treat a very crude model of an exploding star, in the weak field approximation of the Brans-Dicke theory, in a scenario that resembles some characteristics data of a Type Ia Supernova. The most noticeable feature, in the electromagnetic component, is the relationship between the absolute magnitude at maximum brightness of the star and the decline rate in one magnitude from that maximum. This characteristic has become one of the most accurate method to measure luminosity distances to objects at cosmological distances. An interesting result is that the active mass associated with the scalar field is totally radiated to infinity, representing a mass loss in the ratio of the "tensor" component to the scalar component of 1 to (2ω+3)(2 \omega + 3) (ω\omega is the Brans-Dicke parameter), in agreement with a general result of Hawking. Then, this model shows explicitly, in a dynamical case, the mechanism of radiation of scalar field, which is necessary to understand the Hawking result.Comment: 11 pages, no figures. Published in Class. Quantum Gravity V22 (2005

    A Spectroscopic Study of Mass Outflows in the Interacting Binary RY Scuti

    Full text link
    The massive interacting binary RY Scuti is an important representative of an active mass-transferring system that is changing before our eyes and which may be an example of the formation of a Wolf-Rayet star through tidal stripping. Utilizing new and previously published spectra, we present examples of how a number of illustrative absorption and emission features vary during the binary orbit. We identify spectral features associated with each component, calculate a new, double-lined spectroscopic binary orbit, and find masses of 7.1 +/- 1.2 M_sun for the bright supergiant and 30.0 +/- 2.1 M_sun for the hidden massive companion. Through tomographic reconstruction of the component spectra from the composite spectra, we confirm the O9.7 Ibpe spectral class of the bright supergiant and discover a B0.5 I spectrum associated with the hidden massive companion; however, we suggest that the latter is actually the spectrum of the photosphere of the accretion torus immediately surrounding the massive companion. We describe the complex nature of the mass loss flows from the system in the context of recent hydrodynamical models for beta Lyr, leading us to conclude RY Scuti has matter leaving the system in two ways: 1) a bipolar outflow from winds generated by the hidden massive companion, and 2) mass from the bright O9.7 Ibpe supergiant flowing from the region near the L2 point to fill out a large, dense circumbinary disk. This circumbinary disk (radius ~ 1 AU) may feed the surrounding double-toroidal nebula (radius ~ 2000 AU).Comment: 41 pages with 7 tables and 11 figures, accepted to Ap

    The Stony Brook / SMARTS Atlas of mostly Southern Novae

    Full text link
    We introduce the Stony Brook / SMARTS Atlas of (mostly) Southern Novae. This atlas contains both spectra and photometry obtained since 2003. The data archived in this atlas will facilitate systematic studies of the nova phenomenon and correlative studies with other comprehensive data sets. It will also enable detailed investigations of individual objects. In making the data public we hope to engender more interest on the part of the community in the physics of novae. The atlas is on-line at \url{http://www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/} .Comment: 11 figures; 5 table

    Classical novae from the POINT-AGAPE microlensing survey of M31 -- I. The nova catalogue

    Full text link
    The POINT-AGAPE survey is an optical search for gravitational microlensing events towards the Andromeda Galaxy (M31). As well as microlensing, the survey is sensitive to many different classes of variable stars and transients. Here we describe the automated detection and selection pipeline used to identify M31 classical novae (CNe) and we present the resulting catalogue of 20 CN candidates observed over three seasons. CNe are observed both in the bulge region as well as over a wide area of the M31 disk. Nine of the CNe are caught during the final rise phase and all are well sampled in at least two colours. The excellent light-curve coverage has allowed us to detect and classify CNe over a wide range of speed class, from very fast to very slow. Among the light-curves is a moderately fast CN exhibiting entry into a deep transition minimum, followed by its final decline. We have also observed in detail a very slow CN which faded by only 0.01 mag day1^{-1} over a 150 day period. We detect other interesting variable objects, including one of the longest period and most luminous Mira variables. The CN catalogue constitutes a uniquely well-sampled and objectively-selected data set with which to study the statistical properties of classical novae in M31, such as the global nova rate, the reliability of novae as standard-candle distance indicators and the dependence of the nova population on stellar environment. The findings of this statistical study will be reported in a follow-up paper.Comment: 21 pages, 13 figures, re-submitted for publication in MNRAS, typos corrected, references updated, figures 5-9 made cleare

    Kepler photometry of RRc stars: peculiar double-mode pulsations and period doubling

    Get PDF
    We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5 yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f2 has an amplitude of a few mmag, 20–45 times lower than the main radial mode with frequency f1. The two oscillations have a period ratio of P2/P1 = 0.612–0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is non-radial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P2/P1 ∼ 0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f2 at ∼1/2f2 and at ∼3/2f2. This is a signature of period doubling of the secondary oscillation, and is the first detection of period doubling in RRc stars. The amplitudes and phases of f2 and its subharmonics are variable on a time-scale of 10–200 d. The dominant radial mode also shows variations on the same time-scale, but with much smaller amplitude. In three Kepler RRc stars we detect additional periodicities, with amplitudes below 1 mmag, that must correspond to non-radial g-modes. Such modes never before have been observed in RR Lyrae variables

    New Baade-Wesselink distances and radii for four metal-rich Galactic Cepheids

    Full text link
    We provided accurate estimates of distances, radii and iron abundances for four metal-rich Cepheids, namely V340 Ara, UZ Sct, AV Sgr and VY Sgr. The main aim of this investigation is to constrain their pulsation properties and their location across the Galactic inner disk. We adopted new accurate NIR (J,H,K) light curves and new radial velocity measurements for the target Cepheids to determinate their distances and radii using the Baade-Wesselink technique. In particular, we adopted the most recent calibration of the IR surface brightness relation and of the projection factor. Moreover, we also provided accurate measurements of the iron abundance of the target Cepheids. Current distance estimates agree within one sigma with similar distances based either on empirical or on theoretical NIR Period-Luminosity relations. However, the uncertainties of the Baade-Wesselink distances are on average a factor of 3-4 smaller when compared with errors affecting other distance determinations. Mean Baade-Wesselink radii also agree at one sigma level with Cepheid radii based either on empirical or on theoretical Period-Radius relations. Iron abundances are, within one sigma, similar to the iron contents provided by Andrievsky and collaborators, thus confirming the super metal-rich nature of the target Cepheids. We also found that the luminosity amplitudes of classical Cepheids, at odds with RR Lyrae stars, do not show a clear correlation with the metal-content. This circumstantial evidence appears to be the consequence of the Hertzsprung progression together with the dependence of the topology of the instability strip on metallicity, evolutionary effects and binaries.Comment: 9 pages, 7 figures, A&A accepte

    Nova light curves from the Solar Mass Ejection Imager (SMEI) - II. The extended catalogue

    Get PDF
    We present the results from observing nine Galactic novae in eruption with the Solar Mass Ejection Imager (SMEI) between 2004 and 2009. While many of these novae reached peak magnitudes that were either at or approaching the detection limits of SMEI, we were still able to produce light curves that in many cases contained more data at and around the initial rise, peak, and decline than those found in other variable star catalogs. For each nova, we obtained a peak time, maximum magnitude, and for several an estimate of the decline time (t2). Interestingly, although of lower quality than those found in Hounsell et al. (2010a), two of the light curves may indicate the presence of a pre-maximum halt. In addition the high cadence of the SMEI instrument has allowed the detection of low amplitude variations in at least one of the nova light curves

    Rate of Period Change as a Diagnostic of Cepheid Properties

    Full text link
    Rate of period change P˙\dot{P} for a Cepheid is shown to be a parameter that is capable of indicating the instability strip crossing mode for individual objects, and, in conjunction with light amplitude, likely location within the instability strip. Observed rates of period change in over 200 Milky Way Cepheids are demonstrated to be in general agreement with predictions from stellar evolutionary models, although the sample also displays features that are inconsistent with some published models and indicative of the importance of additional factors not fully incorporated in models to date.Comment: Published in PASP (March 2006); TeX source & figures now provide

    Multiwavelength observations of V407 Lupi (ASASSN-16kt) --- a very fast nova erupting in an intermediate polar

    Get PDF
    We present a detailed study of the 2016 eruption of nova V407 Lupi (ASASSN-16kt), including optical, near-infrared, X-ray, and ultraviolet data from SALT, SMARTS, SOAR, Chandra, Swift, and XMM-Newton. Timing analysis of the multiwavelength light-curves shows that, from 168 days post-eruption and for the duration of the X-ray supersoft source phase, two periods at 565 s and 3.57 h are detected. We suggest that these are the rotational period of the white dwarf and the orbital period of the binary, respectively, and that the system is likely to be an intermediate polar. The optical light-curve decline was very fast (t2t_2 \leq 2.9 d), suggesting that the white dwarf is likely massive (1.25\gtrsim 1.25 M_{\odot}). The optical spectra obtained during the X-ray supersoft source phase exhibit narrow, complex, and moving emission lines of He II, also characteristics of magnetic cataclysmic variables. The optical and X-ray data show evidence for accretion resumption while the X-ray supersoft source is still on, possibly extending its duration
    corecore