824 research outputs found

    Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking

    Get PDF
    We present a renormalizable 4-dimensional SU(N) gauge theory with a suitable multiplet of scalar fields, which dynamically develops extra dimensions in the form of a fuzzy sphere S^2. We explicitly find the tower of massive Kaluza-Klein modes consistent with an interpretation as gauge theory on M^4 x S^2, the scalars being interpreted as gauge fields on S^2. The gauge group is broken dynamically, and the low-energy content of the model is determined. Depending on the parameters of the model the low-energy gauge group can be SU(n), or broken further to SU(n_1) x SU(n_2) x U(1), with mass scale determined by the size of the extra dimension.Comment: 27 pages. V2: discussion and references added, published versio

    Registration of a Validated Mechanical Atlas of Middle Ear for Surgical Simulation

    Get PDF
    International audienceThis paper is centered on the development of a new train- ing and rehearsal simulation system for middle ear surgery. First, we have developed and validated a mechanical atlas based on finite element method of the human middle ear. The atlas is based on a microMRI. Its mechanical behavior computed in real-time has been successfully val- idated. In addition, we propose a method for the registration of the mechanical atlas on patient imagery. The simulation can be used for a rehearsal surgery with the geometrical anatomy of a given patient and with mechanical data that are validated. Moreover, this process does not necessitate a complete re-built of the model

    Forward and Reverse Genetics of Rapid-Cycling \u3cem\u3eBrassica oleracea\u3c/em\u3e

    Get PDF
    Seeds of rapid-cycling Brassica oleracea were mutagenized with the chemical mutagen, ethylmethane sulfonate. The reverse genetics technique, TILLING, was used on a sample population of 1,000 plants, to determine the mutation profile. The spectrum and frequency of mutations induced by ethylmethane sulfonate was similar to that seen in other diploid species such as Arabidopsis thaliana. These data indicate that the mutagenesis was effective and demonstrate that TILLING represents an efficient reverse genetic technique in B. oleracea that will become more valuable as increasing genomic sequence data become available for this species. The extensive duplication in the B. oleracea genome is believed to result in the genetic redundancy that has been important for the evolution of morphological diversity seen in today\u27s B. oleracea crops (broccoli, Brussels sprouts, cauliflower, cabbage, kale and kohlrabi). However, our forward genetic screens identified 120 mutants in which some aspect of development was affected. Some of these lines have been characterized genetically and in the majority of these, the mutant trait segregates as a recessive allele affecting a single locus. One dominant mutation (curly leaves) and one semi-dominant mutation (dwarf-like) were also identified. Allelism tests of two groups of mutants (glossy and dwarf) revealed that for some loci, multiple independent alleles have been identified. These data indicate that, despite genetic redundancy, mutation of many individual loci in B. oleracea results in distinct phenotypes

    High-p_T pion and kaon production in relativistic nuclear collisions

    Full text link
    High-p_T pion and kaon production is studied in relativistic proton-proton, proton-nucleus, and nucleus-nucleus collisions in a wide energy range. Cross sections are calculated based on perturbative QCD, augmented by a phenomenological transverse momentum distribution of partons (``intrinsic k_T''). An energy dependent width of the transverse momentum distribution is extracted from pion and charged hadron production data in proton-proton/proton-antiproton collisions. Effects of multiscattering and shadowing in the strongly interacting medium are taken into account. Enhancement of the transverse momentum width is introduced and parameterized to explain the Cronin effect. In collisions between heavy nuclei, the model over-predicts central pion production cross sections (more significantly at higher energies), hinting at the presence of jet quenching. Predictions are made for proton-nucleus and nucleus-nucleus collisions at RHIC energies.Comment: 26 pages in Latex, 19 EPS figure

    Inflammatory, Structural, and Pain Biochemical Biomarkers May Reflect Radiographic Disc Space Narrowing: The Johnston County Osteoarthritis Project

    Get PDF
    The purpose of this work is to determine the relationship between biomarkers of inflammation, structure, and pain with radiographic disc space narrowing (DSN) in community-based participants. A total of 74 participants (37 cases and 37 controls) enrolled in the Johnston County Osteoarthritis Project during 2006–2010 were selected. The cases had at least mild radiographic DSN and low back pain (LBP). The controls had neither radiographic evidence of DSN nor LBP. The measured analytes from human serum included N-cadherin, Keratin-19, Lumican, CXCL6, RANTES, IL-17, IL-6, BDNF, OPG, and NPY. A standard dolorimeter measured pressure-pain threshold. The coefficients of variation were used to evaluate inter- and intra-assay reliability. Participants with similar biomarker profiles were grouped together using cluster analysis. The binomial regression models were used to estimate risk ratios (RR) and 95% confidence intervals (CI) in propensity score-matched models. Significant associations were found between radiographic DSN and OPG (RR = 3.90; 95% CI: 1.83, 8.31), IL-6 (RR = 2.54; 95% CI: 1.92, 3.36), and NPY (RR = 2.06 95% CI: 1.62, 2.63). Relative to a cluster with low levels of biomarkers, a cluster representing elevated levels of OPG, RANTES, Lumican, Keratin-19, and NPY (RR = 3.04; 95% CI: 1.22, 7.54) and a cluster representing elevated levels of NPY (RR = 2.91; 95% CI: 1.15, 7.39) were significantly associated with radiographic DSN. Clinical Significance: These findings suggest that individual and combinations of biochemical biomarkers may reflect radiographic DSN. This is just one step toward understanding the relationships between biochemical biomarkers and DSN that may lead to improved intervention delivery

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore