447 research outputs found
Advanced configuration of gravitational-wave interferometer on the base of "sensitive mode" in "white-light cavity"
A novel conception of "sensitive mode" (SM) is proposed to apply in
gravitational-wave advanced interferometer configuration. The SM is resonant
oscillation of electromagnetic field in "white-light cavity", where the
resonance line is broadened without decreasing cavity quality. The frequency of
the SM is greatly susceptible to the change of cavity length, and the SM is
established in a cavity with time constant smaller than a conventional mode.
Due to these advantages the sensitivity and bandwidth of AIC can be increased.Comment: 9 pages, 5 figure
Existence of the Abrikosov vortex state in two-dimensional type-II superconductors without pinning
Theory alternative to the vortex lattice melting theories is advertised. The
vortex lattice melting theories are science fiction cond-mat/9811051 because
the Abrikosov state is not the vortex lattice with crystalline long-range
order. Since the fluctuation correction to the Abrikosov solution is infinite
in the thermodynamic limit (K.Maki and H.Takayama, 1972) any fluctuation theory
of the mixed state should consider a superconductor with finite sizes. Such
nonperturbative theory for the easiest case of two-dimensional superconductor
in the lowest Landau level approximation is presented in this work. The
thermodynamic averages of the spatial average order parameter and of the
Abrikosov parameter are calculated. It is shown that the position
H_{c4} of the transition into the Abrikosov state (i.e. in the mixed state with
long-range phase coherence) depends strongly on sizes of two-dimensional
superconductor. Fluctuations eliminate the Abrikosov vortex state in a wide
region of the mixed state of thin films with real sizes and without pinning
disorders, i.e. H_{c4} << H_{c2}. The latter has experimental corroboration in
Phys.Rev.Lett. 75, 2586 (1995).Comment: 4 pages, 0 figure
One million years of climate-driven rock uplift rate variation on the Wasatch Fault revealed by fluvial topography
Displacement along the Wasatch Fault, Utah, has created the Wasatch Range. Owing to its topographic prominence, location on the eastern boundary of the Basin and Range, presently active fault slip, and proximity to Utah’s largest cities, the range and fault have garnered much attention. On the 102–103 year timescale, the behavior, displacement and seismic history of the Wasatch Fault has been well categorized in order to assess seismic hazard. On the 107 year timescale, the rock uplift rate history of the Wasatch range has also been resolved using thermochronometric data, owing to its importance in inferring the history of extension in the western US. However, little data exists that bridges the gap between these two timescales. Here, we infer an approximately 1 Ma rock uplift rate history from analysis of three river networks located in the center of the range. Our recovered rock uplift rate histories evidence periodic changes to rock uplift on the Wasatch Fault, that coincide with climate driven filling and unfilling of lakes in the Bonnneville Basin. To ensure our rock uplift rate histories are robust, we use field data and previously published cosmogenic 10Be erosion rate data to tightly constrain the erodibility parameter, and investigate an appropriate value for the slope exponent of the stream power model, n. We use our river network inversion to reconcile estimates of erodibility from a number of methodologies and show that the contrast between bedrock and bedload strength is an important factor that determines erodibility
Construction of Field Algebras with Quantum Symmetry from Local Observables
It has been discussed earlier that ( weak quasi-) quantum groups allow for
conventional interpretation as internal symmetries in local quantum theory.
From general arguments and explicit examples their consistency with (braid-)
statistics and locality was established. This work addresses to the
reconstruction of quantum symmetries and algebras of field operators. For every
algebra \A of observables satisfying certain standard assumptions, an
appropriate quantum symmetry is found. Field operators are obtained which act
on a positive definite Hilbert space of states and transform covariantly under
the quantum symmetry. As a substitute for Bose/Fermi (anti-) commutation
relations, these fields are demonstrated to obey local braid relation.Comment: 50 pages, HUTMP 93-B33
Steady water waves with multiple critical layers: interior dynamics
We study small-amplitude steady water waves with multiple critical layers.
Those are rotational two-dimensional gravity-waves propagating over a perfect
fluid of finite depth. It is found that arbitrarily many critical layers with
cat's-eye vortices are possible, with different structure at different levels
within the fluid. The corresponding vorticity depends linearly on the stream
function.Comment: 14 pages, 3 figures. As accepted for publication in J. Math. Fluid
Mec
The evolution of galaxy groups and of galaxies therein
Properties of groups of galaxies depend sensitively on the algorithm for
group selection, and even the most recent catalogs of groups built from
redshift-space selection should suffer from projections and infalling galaxies.
The cosmo-dynamical evolution of groups from initial Hubble expansion to
collapse and virialization leads to a fundamental track (FT) in
virial-theorem-M/L vs crossing time. The increased rates of mergers, both
direct and after dynamical friction, in groups relative to clusters, explain
the higher fraction of elliptical galaxies at given local number density in
X-ray selected groups, relative to clusters, even when the hierarchical
evolution of groups is considered. Galaxies falling into groups and clusters
should later travel outwards to typically 2 virial radii, which is somewhat
less than the outermost radius where observed galaxy star formation
efficiencies are enhanced relative to field galaxies of same morphological
type. An ongoing analysis of the internal kinematics of X-ray selected groups
suggests that the radial profiles of line of sight velocity dispersion are
consistent with isotropic NFW distributions for the total mass density, with
higher (lower) concentrations than LambdaCDM predictions in groups of high
(low) mass. The critical mass, at M200 ~ 10^13 M_sun is consistent with
possible breaks in the X-ray luminosity-temperature and Fundamental Plane
relations. The internal kinematics of groups indicate that the M-T relation of
groups should agree with that extrapolated from clusters with no break at the
group scale. The analyses of observed velocity dispersion profiles and of the
FT both suggest that low velocity dispersion groups (compact and loose, X-ray
emitting or undetected) are quite contaminated by chance projections.Comment: Invited review, ESO workshop "Groups of Galaxies in the Nearby
Universe", held in Santiago, Chile, 5-9 December 2005, ed. I. Saviane, V.
Ivanov & J. Borissova, 16 page
Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System
A simple model for the dynamics of the Magellanic Stream (MS), in the
framework of modified gravity models is investigated. We assume that the galaxy
is made up of baryonic matter out of context of dark matter scenario. The model
we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In
order to examine the compatibility of the overall properties of the MS under
the MOG theory, the observational radial velocity profile of the MS is compared
with the numerical results using the fit method. In order to obtain
the best model parameters, a maximum likelihood analysis is performed. We also
compare the results of this model with the Cold Dark Matter (CDM) halo model
and the other alternative gravity model that proposed by Bekenstein (2004), so
called TeVeS. We show that by selecting the appropriate values for the free
parameters, the MOG theory seems to be plausible to explain the dynamics of the
MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy
A Single-Lumen Central Venous Catheter for Continuous and Direct Intra-abdominal Pressure Measurement
Background: Abdominal compartment syndrome (ACS) is associated with high morbidity and mortality rates. Therefore, the need for a good diagnostic tool to predict intra-abdominal hypertension (IAH) and progression to ACS is paramount. Bladder pressure (BP) has been used for several years for intra-abdominal pressure (IAP) measurement but has the disadvantage that it is not a continuous measurement. In this study, a single-lumen central venous catheter (CVC) is placed through the abdominal wall into the abdominal cavity to continuously and directly monitor the intra-abdominal pressure (CDIAP). The aim of this study was to evaluate the use of CDIAP to measure BP as a representative of the true IAP. Methods: Both BP and CDIAP were prospectively recorded on a variety of surgical patients admitted to the intensive care unit (ICU) from March 2003 up to December 2004. At the end of the surgical procedure, the CVC was placed through the abdominal wall and connected to a pressure transducer. In addition, the BP was measured through the urine drainage port after clamping the catheter and filling the bladder with 50 ml of 0.9% saline. At least three paired measurements (BP and CDIAP) were performed for at least one day on the ICU in a standardized manner at preset time intervals on each patient. The paired measurements were compared using the Bland-Altman (B-A) method. Data are presented as mean ± standard deviation. Results: Over a period of 22 months (March 2003 until December 2004), 125 paired measurements of both BP and CDIAP were recorded on 25 patients. The mean age was 72.4 ± 6.6 years. Eighteen patients underwent central vascular surgery, and seven patients with peritonitis received laparotomy. The mean CDIAP was 11.4 ± 4.8 (range 2-30) mmHg, and the BP was 12.9 ± 5.3 (range 3-37) mmHg. The mean difference between CDIAP and BP was 1.6 ± 2.7 mmHg. There was an acceptable level of agreement (intraclass correlation 0.82) between IAP measured by BP and IAP measured via CDIAP. Conclusion: Continuous direct intra-abdominal pressure measurement proved that the BP measurement approach of Kron is representative of the IAP. CDIAP measurement is accurate and makes it easier for the nursing staff to be informed of the IAP
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- …