332 research outputs found

    Fermiology and superconductivity studies on the non-tetrachalcogenafulvalene structured organic superconductor beta-(BDA-TTP)_2SbF_6

    Full text link
    The quantum oscillatory effect and superconductivity in a non-tetrachalcogenafulvalene (TCF) structure based organic superconductor beta-(BDA-TTP)_2SbF_6 are studied. Here the Shubnikov-de Haas effect (SdH) and angular dependent magnetoresistance oscillations (AMRO) are observed. The oscillation frequency associated with a cylindrical Fermi surface is found to be about 4050 tesla, which is also verified by the tunnel diode oscillator (TDO) measurement. The upper critical field Hc2 measurement in a tilted magnetic field and the TDO measurement in the mixed state reveal a highly anisotropic superconducting nature in this material. We compared physical properties of beta-(BDA-TTP)_2SbF_6 with typical TCF structure based quasi two-dimensional organic conductors. A notable feature of beta-(BDA-TTP)_2SbF_6 superconductor is a large value of effective cyclotron mass m_c^*=12.4+/1.1 m_e, which is the largest yet found in an organic superconductor. A possible origin of the enhanced effective mass and its relation to the superconductivity are briefly discussed.Comment: 8 pages, 10 figure

    Self-assembly of micelles into designed networks

    Get PDF
    The EO20PO70EO20(molecular weight 5800) amphiphile as a template is to form dispersed micelle structures. Silver nanoparticles, as inorganic precursors synthesized by a laser ablation method in pure water, are able to produce the highly ordered vesicles detected by TEM micrography. The thickness of the outer layer of a micelle, formed by the silver nanoparticles interacting preferentially with the more hydrophilic EO20block, was around 3.5 nm. The vesicular structure ensembled from micelles is due to proceeding to the mixture of cubic and hexagonal phases

    Coherent vs incoherent interlayer transport in layered metals

    Get PDF
    The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For κ\kappa-(BEDT-TTF)2_2I3_3 we find a well-resolved peak in the angle-dependent magnetoresistance at Θ=90\Theta = 90^\circ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for β\beta''-(BEDT-TTF)2_2SF5_5CH2_2CF2_2SO3_3. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.Comment: 4 pages, 4 figures. Phys. Rev. B, in pres

    Self-organization of stack-up block copolymers into polymeric supramolecules

    Get PDF
    Polyethylene oxide –b– polypropylene oxide -b- polyethylene oxide (EO106PO70EO106) block copolymer self-organizes into polymeric supramolecules, characterized by NMR as phase transition from the isotropic stack-up block structure to the ordered cubic polymeric supramolecular structure. Its dependence on both temperature and copolymer concentration is clearly shown by the changes in line shape and chemical shift of the PO70blockβ,γresonances

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    Structural Characterization of Mesoporous Silica Nanofibers Synthesized Within Porous Alumina Membranes

    Get PDF
    Mesoporous silica nanofibers were synthesized within the pores of the anodic aluminum oxide template using a simple sol–gel method. Transmission electron microscopy investigation indicated that the concentration of the structure-directing agent (EO20PO70EO20) had a significant impact on the mesostructure of mesoporous silica nanofibers. Samples with alignment of nanochannels along the axis of mesoporous silica nanofibers could be formed under the P123 concentration of 0.15 mg/mL. When the P123 concentration increased to 0.3 mg/mL, samples with a circular lamellar mesostructure could be obtained. The mechanism for the effect of the P123 concentration on the mesostructure of mesoporous silica nanofibres was proposed and discussed

    Paramagnetic limiting of the upper critical field of the layered organic superconductor κ(BEDTTTF)2Cu(SCN)2\kappa -(BEDT-TTF)_2Cu(SCN)_2

    Get PDF
    We report detailed measurements of the interlayer magnetoresistance of the layered organic superconductor κ(BEDTTTF)2Cu(SCN)2\kappa -(BEDT-TTF)_2Cu(SCN)_2 for temperatures down to 0.5 K and fields up to 30 tesla. The upper critical field is determined from the resistive transition for a wide range of temperatures and field directions. For magnetic fields parallel to the layers, the upper critical field increases approximately linearly with decreasing temperature. The upper critical field at low temperatures is compared to the Pauli paramagnetic limit, at which singlet superconductivity should be destroyed by the Zeeman splitting of the electron spins. The measured value is comparable to a value for the paramagnetic limit calculated from thermodynamic quantities but exceeds the limit calculated from BCS theory. The angular dependence of the upper critical field shows a cusp-like feature for fields close to the layers, consistent with decoupled layers.Comment: 16 pages 5 figure

    Self-Assembly in Monoelaidin Aqueous Dispersions: Direct Vesicles to Cubosomes Transition

    Get PDF
    Background: In the present study, synchrotron small-angle X-ray scattering (SAXS) and Cryo-TEM were used to characterize the temperature-induced structural transitions of monoelaidin (ME) aqueous dispersion in the presence of the polymeric stabilizer F127. We prove that the direct transition from vesicles to cubosomes by heating this dispersion is possible. The obtained results were compared with the fully hydrated bulk ME phase. Methodology/principal findings: Our results indicate the formation of ME dispersion, which is less stable than that based on the congener monoolein (MO). In addition, the temperature-dependence behavior significantly differs from the fully hydrated bulk phase. SAXS findings indicate a direct L(alpha)-V(2) internal transition in the dispersion. While the transition temperature is conserved in the dispersion, the formed cubosomes with internal Im3m symmetry clearly contain more water and this ordered interior is retained over a wider temperature range as compared to its fully hydrated bulk system. At 25 degrees C, Cryo-TEM observations reveal the formation of most likely closely packed onion-like vesicles. Above the lamellar to non-lamellar phase transition at 65 degrees C, flattened cubosomes with an internal nanostructure are observed. However, they have only arbitrary shapes and thus, their morphology is significantly different from that of the well-shaped analogous MO cubosome and hexosome particles. Conclusions/significance: Our study reveals a direct liposomes-cubosomes transition in ME dispersion. The obtained results suggest that the polymeric stabilizer F127 especially plays a significant role in the membrane fusion processes. F127 incorporates in considerable amount into the internal nanostructure and leads to the formation of a highly swollen Im3m phase

    Synthesis of Highly Substituted Adamantanones from Bicyclo[3.3.1]nonanes

    Full text link
    Trifluoromethanesulfonic acid and other electrophiles promote formation of the adamantanone core from the readily accessible 1,5-dimethyl-3,7-dimethylenebicyclo[3.3.1]nonan-9-one 2. Because adamantyl cation 3 can be trapped by a range of nucleophiles, including aromatic and heteroaromatic rings, alcohol, nitriles, and halides, access to a wide variety of functionality at the newly formed tertiary position is provided

    DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    Get PDF
    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase
    corecore