484 research outputs found

    Papers in New Guinea Linguistics No. 7

    Get PDF

    Recent developments in SLIVER cell technology

    Get PDF
    SLIVER cells, which were invented and developed at the ANU, allow the production of thin silicon cells and modules from standard silicon wafers, without the requirement for silicon deposition or any other expensive steps. Reductions in silicon consumption by a factor of 7-12 and reductions in the number of wafers that need to be processed per MW of a factor of 12-40 are possible. SLIVER cells are fabricated with sophisticated processing on high quality single crystal silicon substrates. SLIVER cell efficiencies above 19% are the highest reported for any commercially-viable thin-film cell. In this paper we report that a new SLIVER process has been devised that has the potential to double the throughput of a factory compared with the older SLIVER process

    Observation of the decay \psip\rar\kstark

    Full text link
    Using 14 million ψ(2S)\psi(2S) events collected with the BESII detector, branching fractions of \psip\rar\kstarkpm and \kstarknn are determined to be: \calB(\psip\rar\kstarkpm)=(2.9^{+1.3}_{-1.7}\pm0.4)\times 10^{-5} and \calB(\psip\rar\kstarknn)=(13.3^{+2.4}_{-2.7}\pm1.9)\times 10^{-5}. The results confirm the violation of the "12%" rule for these two decay channels with higher precision. A large isospin violation between the charged and neutral modes is observed.Comment: 5 pages, 3 figure

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    Wind modelling of very massive stars up to 300 solar masses

    Full text link
    Some studies have claimed a universal stellar upper-mass limit of 150 Msun. A factor that is often overlooked is that there might be a difference between the current and initial masses of the most massive stars, as a result of mass loss. We present Monte Carlo mass-loss predictions for very massive stars in the range 40-300 Msun, with large luminosities and Eddington factors Gamma. Using our new dynamical approach, we find an upturn in the mass-loss vs. Gamma dependence, at the point where the winds become optically thick. This coincides with the location where wind efficiency numbers surpass the single-scattering limit of Eta = 1, reaching values up to Eta = 2.5. Our modelling suggests a transition from common O-type winds to Wolf-Rayet characteristics at the point where the winds become optically thick. This transitional behaviour is also revealed with respect to the wind acceleration parameter beta, which starts at values below 1 for the optically thin O-stars, and naturally reaches values as high as 1.5-2 for the optically thick Wolf-Rayet models. An additional finding concerns the transition in spectral morphology of the Of and WN characteristic He II line at 4686 Angstrom. When we express our mass-loss predictions as a function of the electron scattering Gamma_e (=L/M) only, we obtain a mass-loss Gamma dependence that is consistent with a previously reported power-law Mdot propto Gamma^5 (Vink 2006) that was based on our semi-empirical modelling approach. When we express Mdot in terms of both Gamma and stellar mass, we find Mdot propto M^0.8 Gamma^4.8 for our high Gamma models. Finally, we confirm that the Gamma-effect on the mass-loss predictions is much stronger than that of an increased helium abundance, calling for a fundamental revision in the way mass loss is incorporated in evolutionary models of the most massive stars.Comment: minor language changes (Astronomy & Astrophysics in press - 11 pages, 10 figures

    Optimal measurements for simultaneous quantum estimation of multiple phases

    Get PDF
    A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this letter we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the maximal theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.Comment: 4 pages + appendix, 2 figure

    Non-identical particle correlations in 130 and 200 AGeV collisions at STAR

    Full text link
    STAR has performed a correlation analyses of pion-kaon and pion-proton pairs for sqrt(s_NN)=130 AGeV and sqrt(s_NN)=200 AGeV and kaon-proton, proton-Lambda and pion-Cascade pairs for AuAu collisions sqrt(s_NN)=200 AGeV. They show that average emission space-time points of pions, kaons and protons are not the same. These asymmetries are interpreted as a consequence of transverse radial expansion of the system; emission time differences explain only part of the asymmetry. Therefore our measurements independently confirm the existence of transverse radial flow. Furthermore, correlations of strange hyperons is investigated by performing proton-Lambda and pion-Cascade analyses, giving estimates of source size at high m_{T}. The strong interaction potential between (anti-)proton and lambda as well as kaon and proton is investigated.Comment: 5 pages, 3 figures, Quark Matter 04 proceedings, submitted to J. Phys. G: Nucl. Phy

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore