184 research outputs found

    Dynamic correlation functions and Boltzmann Langevin approach for driven one dimensional lattice gas

    Get PDF
    We study the dynamics of the totally asymmetric exclusion process with open boundaries by phenomenological theories complemented by extensive Monte-Carlo simulations. Upon combining domain wall theory with a kinetic approach known as Boltzmann-Langevin theory we are able to give a complete qualitative picture of the dynamics in the low and high density regime and at the corresponding phase boundary. At the coexistence line between high and low density phases we observe a time scale separation between local density fluctuations and collective domain wall motion, which are well accounted for by the Boltzmann-Langevin and domain wall theory, respectively. We present Monte-Carlo data for the correlation functions and power spectra in the full parameter range of the model.Comment: 10 pages, 9 figure

    Novel universality classes of coupled driven diffusive systems

    Full text link
    Motivated by the phenomenologies of dynamic roughening of strings in random media and magnetohydrodynamics, we examine the universal properties of driven diffusive system with coupled fields. We demonstrate that cross-correlations between the fields lead to amplitude-ratios and scaling exponents varying continuosly with the strength of these cross-correlations. The implications of these results for experimentally relevant systems are discussed.Comment: To appear in Phys. Rev. E (Rapid Comm.) (2003

    Screened and Unscreened Phases in Sedimenting Suspensions

    Full text link
    A coarse-grained stochastic hydrodynamical description of velocity and concentration fluctuations in steadily sedimenting suspensions is constructed, and analyzed using self-consistent and renormalization group methods. We find that there exists a dynamical, non-equilibrium phase transition from an "unscreened" phase in which we recover the Caflisch-Luke (R.E. Caflisch and J.H.C. Luke, Phys. Fluids 28, 759 (1985)) divergence of the velocity variance to a "screened" phase where the velocity fluctuations have a finite correlation length growing as ϕ1/3\phi^{-1/3} where ϕ\phi is the particle volume fraction, in agreement with Segr\`e et. al. (Phys. Rev. Lett. 79, 2574 (1997)) and the velocity variance is independent of system size. Detailed predictions are made for the correlation function in both phases and at the transition.Comment: 4 pages, revtex 1 figur

    The cosmological evolution of quasar black-hole masses

    Full text link
    Virial black-hole mass estimates are presented for 12698 quasars in the redshift interval 0.1<z<2.1, based on modelling of spectra from the Sloan Digital Sky Survey (SDSS) first data release. The black-hole masses of the SDSS quasars are found to lie between \simeq10^{7}\Msun and an upper limit of \simeq 3\times 10^{9}\Msun, entirely consistent with the largest black-hole masses found to date in the local Universe. The estimated Eddington ratios of the broad-line quasars (FWHM\geq 2000 kms^{-1}) show a clear upper boundary at Lbol/LEdd1L_{bol}/L_{Edd}\simeq 1, suggesting that the Eddington luminosity is still a relevant physical limit to the accretion rate of luminous broad-line quasars at z2z\leq 2. By combining the black-hole mass distribution of the SDSS quasars with the 2dF quasar luminosity function, the number density of active black holes at z2z\simeq 2 is estimated as a function of mass. In addition, we independently estimate the local black-hole mass function for early-types using the MbhσM_{bh}-\sigma and MbhLbulgeM_{bh}-L_{bulge} correlations. Based on the SDSS velocity dispersion function and the 2MASS KK-band luminosity function, both estimates are found to be consistent at the high-mass end (M_{bh}\geq 10^{8}\Msun). By comparing the estimated number density of active black holes at z2z\simeq 2 with the local mass density of dormant black holes, we set lower limits on the quasar lifetimes and find that the majority of black holes with mass \geq 10^{8.5}\Msun are in place by 2\simeq 2.Comment: 15 pages, 10 figures, revised version, accepted for publication by MNRA

    Two-Loop Renormalization Group Analysis of the Burgers-Kardar-Parisi-Zhang Equation

    Get PDF
    A systematic analysis of the Burgers--Kardar--Parisi--Zhang equation in d+1d+1 dimensions by dynamic renormalization group theory is described. The fixed points and exponents are calculated to two--loop order. We use the dimensional regularization scheme, carefully keeping the full dd dependence originating from the angular parts of the loop integrals. For dimensions less than dc=2d_c=2 we find a strong--coupling fixed point, which diverges at d=2d=2, indicating that there is non--perturbative strong--coupling behavior for all d2d \geq 2. At d=1d=1 our method yields the identical fixed point as in the one--loop approximation, and the two--loop contributions to the scaling functions are non--singular. For d>2d>2 dimensions, there is no finite strong--coupling fixed point. In the framework of a 2+ϵ2+\epsilon expansion, we find the dynamic exponent corresponding to the unstable fixed point, which describes the non--equilibrium roughening transition, to be z=2+O(ϵ3)z = 2 + {\cal O} (\epsilon^3), in agreement with a recent scaling argument by Doty and Kosterlitz. Similarly, our result for the correlation length exponent at the transition is 1/ν=ϵ+O(ϵ3)1/\nu = \epsilon + {\cal O} (\epsilon^3). For the smooth phase, some aspects of the crossover from Gaussian to critical behavior are discussed.Comment: 24 pages, written in LaTeX, 8 figures appended as postscript, EF/UCT--94/3, to be published in Phys. Rev. E

    Invasion is a community affair: clandestine followers in the bacterial community associated to green algae, Caulerpa racemosa, track the invasion source

    Get PDF
    Biological invasions rank amongst the most deleterious components of global change inducing alterations from genes to ecosystems. The genetic characteristics of introduced pools of individuals greatly influence the capacity of introduced species to establish and expand. The recently demonstrated heritability of microbial communities associated to individual genotypes of primary producers makes them a potentially essential element of the evolution and adaptability of their hosts. Here, we characterized the bacterial communities associated to native and non-native populations of the marine green macroalga Caulerpa racemosa through pyrosequencing, and explored their potential role on the strikingly invasive trajectory of their host in the Mediterranean. The similarity of endophytic bacterial communities from the native Australian range and several Mediterranean locations confirmed the origin of invasion and revealed distinct communities associated to a second Mediterranean variety of C. racemosa long reported in the Mediterranean. Comparative analysis of these two groups demonstrated the stability of the composition of bacterial communities through the successive steps of introduction and invasion and suggested the vertical transmission of some major bacterial OTUs. Indirect inferences on the taxonomic identity and associated metabolism of bacterial lineages showed a striking consistency with sediment upheaval conditions associated to the expansion of their invasive host and to the decline of native species. These results demonstrate that bacterial communities can be an effective tracer of the origin of invasion and support their potential role in their eukaryotic host’s adaptation to new environments. They put forward the critical need to consider the 'meta-organism' encompassing both the host and associated micro-organisms, to unravel the origins, causes and mechanisms underlying biological invasions

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    The Physics of the B Factories

    Get PDF
    corecore