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Abstract

Biological invasions rank amongst the most deleterious components of global change inducing alterations from genes
to ecosystems. The genetic characteristics of introduced pools of individuals greatly influence the capacity of
introduced species to establish and expand. The recently demonstrated heritability of microbial communities
associated to individual genotypes of primary producers makes them a potentially essential element of the evolution
and adaptability of their hosts. Here, we characterized the bacterial communities associated to native and non-native
populations of the marine green macroalga Caulerpa racemosa through pyrosequencing, and explored their potential
role on the strikingly invasive trajectory of their host in the Mediterranean. The similarity of endophytic bacterial
communities from the native Australian range and several Mediterranean locations confirmed the origin of invasion
and revealed distinct communities associated to a second Mediterranean variety of C. racemosa long reported in the
Mediterranean. Comparative analysis of these two groups demonstrated the stability of the composition of bacterial
communities through the successive steps of introduction and invasion and suggested the vertical transmission of
some major bacterial OTUs. Indirect inferences on the taxonomic identity and associated metabolism of bacterial
lineages showed a striking consistency with sediment upheaval conditions associated to the expansion of their
invasive host and to the decline of native species. These results demonstrate that bacterial communities can be an
effective tracer of the origin of invasion and support their potential role in their eukaryotic host’s adaptation to new
environments. They put forward the critical need to consider the 'meta-organism' encompassing both the host and
associated micro-organisms, to unravel the origins, causes and mechanisms underlying biological invasions.
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Introduction

Anthropogenic disturbances inducing habitat change,
modification of biotic interactions and deliberated or accidental
translocation of specimens outside their species distribution
range are propelling a global increase in biological invasions
[1,2]. Invasive species, in turn, are additional drivers of
biodiversity decline [3].

The capacity of introduced species to expand and become
invasive is dependent on their capacity to adapt to new
environmental conditions. Thus far, assessments of the
potential of introduced species for invasive behavior have
focused on the role of morphological and physiological traits as

drivers of their potential to outcompete native species [4,5].
However, the competitive potential of invasive species may not
be entirely determined by their intrinsic capacities, but may be
at least partly shaped by associated microbes[6]. . Bacterial
communities are in fact often transmitted vertically, becoming a
heritable component able to greatly influence the function,
competence and evolution of their host genotypes [7]. Our
understanding of the mechanisms underlying the establishment
and spread of introduced species may therefore require a
serious appraisal of the potential co-introduction and influence
of bacterial communities on the success of non-indigenous
species.
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Alga from Caulerpa genus are showing a complex
morphology consisting of - leave like structures-fronds, stolon
and rhizoids, yet with the entire thallus composed of a single
cell, a giant siphonous structure that was previously showed in
association with an important bacterial diversity on the invasive
alga Caulerpa taxifolia [8]. In this pioneer study similarity in the
composition of the highly diverse bacterial communities in
native populations from Northern tropical Australia and those
introduced in the Mediterranean [8] was reported, in line with
the genetic similarity of the host algae from these two regions
[8,9,10]. The methods used did not allow the exhaustive
characterization of bacterial diversity, or the discrimination of
endophytic versus epiphytic or host versus habitat specific
bacteria, but suggested that bacterial community could be used
to trace back the origin of introductions. Invasive species
frequently act as ecosystem engineers [11] and the presence
of Caulerpa species induces sediment modifications that are
suspected to increase their success and contribute to the
displacement of native species [5,6]. Among others, Caulerpa
species enhance sulphate reduction rates and the production
of sulfide, rendering the sediment highly toxic to seagrasses
[12,13].

Epiphytic bacteria on algae are variable and distinct from
those in seawater [14,15,16] and play key roles on in
morphological development [17,18,19,20], growth and nutrient
acquisition [21,22] spore release and settlement [23,24], and
protection from fouling [25], among others. Contrastingly and
although they are more likely to present tight association to
their host and possible vertical transmission, progresses in
characterizing endophytic microbial communities associated to
photosynthetic organisms, including macrophytes, have been
hindered by the difficulties associated with strain cultivation and
high chloroplast contamination in endophytic bacterial libraries
[26]. These technical challenges hitherto impeded the efficient
use of Next Generation Sequencing for massive 16S
characterization. A recent solution to this technical challenge
[27] now allows the comprehensive characterization of bacterial
communities associated with C. racemosa in the
Mediterranean Sea and in one of the native ranges of the
variety C. racemosa var. cylindracea, endemic from the
southern and northern coasts of Western Australia,
northeastern Australia and New Caledonia [28,29]. We
identified and compared putative bacterial epiphytic and
endophytic communities in the native and invaded ranges, in
order to test for the Australian origin of the invasive
Mediterranean variety and the stability of the associations
between host lineages and endophytic bacterial communities,
and to identify possible strains that may have passively or
actively participated in the invasive trajectory of their host.

Results

The total of 173512 sequences used in downstream analysis
after quality control (Table S1) revealed 18325 bacterial
Operational Taxonomic Units (OTUs) (represented by unique
16S genotypes) that segregate into three distinct clusters
(Figure 1A). These results allowed us to distinguish total
communities including epiphytic bacteria (i.e., samples from

non-treated algae) and sediment samples versus the other two
groups composed of endophytic communities (i.e., bleached
algal samples free of epiphytes and of chloroplasts). In order to
understand how endophytic bacteria would shape the different
populations, the same analyses were applied just on the
disinfected samples allowing us to look deeper into the
endophytic community structure. Results show that populations
were separated into 2 clusters. Cluster A gathered samples just
from Mediterranean sites including Tunis, Villefranche and
Greece, and Cluster B joined samples from Malta, Marseille
and Mallorca with samples from Australian native range (WA)
(Figure 1B). This discrimination of three groups by the Principal
Component Analysis (PCA) was strongly supported (p<0.01) by
the analysis of community similarity (ANOSIM) using Bray-
Curtis distances (Table S3). The clustering of non-disinfected
and sediment samples apart from disinfected samples
suggests the distinct composition of endophytic compared to
putative epiphytic communities that clearly appear to be more
similar to the environmental ones (from sediment) (Figure 1A).
The Venn diagram drawn from an OTU table pooling samples
from the different treatments, shows that non-disinfected
samples and sediment share the highest percentage of OTUs
-12.87% (Figure 2). In the case of the percentage of OTUs
shared between disinfected and non-disinfected samples
(8.78%) (Figure 2) it is mostly driven by OTUs that appeared as
shared due to a single sequence in the first pool vs thousands
of the same OTU in the other, reflecting the very scarce
persistence in the surface disinfected samples of some
bacteria that are mostly epiphytic.

Some of the sampling units from the different locations were
amplified for 18S rDNA and sequences were compared to the
Genbank database in order to identify the phylogenetic identity
of SUs from the different collection sites. Interestingly, the
same dichotomy found for the endophytic bacterial
communities (Figure 1B) was reflected by the host phylogeny,
where two different clusters separating samples from Tunis,
Villefranche and Greece and samples from Malta, Marseille
and Mallorca and those from the Australian native range
(Figure 3). SUs gathered in phylogenetic Cluster A were
identified as being phylogenetically related to C. racemosa var.
turbinata-uvifera while sequences in Cluster B were identified
as being related to C. racemosa var. cylindracea (Figure 3)
which is the variety described to be native from Western
Australia. This phylogenetic approach, besides allowing us to
compare the population structure with that from endophytic
bacteria, also allowed us to correctly identify the different C.
racemosa varieties that were misidentified by the collectors.

Heatmaps built for both the most common classes and
orders (Figure 4 and Figure S1) show that bacterial
communities, at these taxonomic levels, mainly distinguish
disinfected and non-disinfected samples. At the class level,
Flavobacteria, Sphigobacteria and Deltaproteobacteria were
clearly prevalent in non-disinfected samples while almost
absent in disinfected SUs (Figure 4). The Heatmap for the
order level show that Flavobacteriales, Sphingobacteriales and
Rhodobacterales were the most prevalent orders for non-
disinfected samples with just a few records on endophytic
community (Figure S1). Betaproteobacteria was one of the

Bacterial Community Associated to C. racemosa

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e68429



most ubiquitous classes found within the bacterial community
of disinfected SUs (Figure 4), mostly due to the order
Burkholderiales, common to samples from all sampling sites
but one (Rottnest Island 1) while nearly absent from non-
disinfected ones (Figure S1).

Only at the order level it was possible to find a pattern that
resembles that given by the whole bacterial community (the
Clusters A and B). The order Pseudomonadales was
conspicuously more present in C. racemosa from Tunis,
Villefranche and Greece (Cluster A) and the order Vibrionales
was found only in samples from the previously determined
Cluster B, except for C. racemosa sampled in Marseille and
one of the locations in Mallorca (Figure S1). Interestingly,
phylogenetic results for some of the most ubiquitous lineages
belonging to Burkholderiales (Figure S2) were segregated
between the two varieties of their algal host with the two
clusters (A and B) identified and associated either to the
invasive Australian or to the ancient Mediterranean variety
(Figure S2), supporting a possible co-evolution of host and
bacterial lineages.

Within Burkholderiales order the most represented family
was Comamonadaceae which phylogenetic tree showed a
cluster exclusive of the invasive group B, while the other
showed a more complex distribution among groups (data not
shown). The Comamonadaceae include nitrogen-fixing and
nitrate-reducing bacteria [30]. Within this family, the most
ubiquitous OTU (OTU110, 230 base pair) had highest similarity
(99%) with Alicycliphilus denitrificans (GenBank CP002657.1;
on the whole 230 bp fragment). A network of OTU110
sequences revealed three clusters (Figure 4), two almost
exclusively composed by sequences from the ‘invasive’ variety
(cluster B), while a third one was, with one exception, entirely
composed of sequences from the old Mediterranean variety

(cluster A) from Tunis, Villefranche or Greece. No sequences
were common to both varieties; the only nodes of the network
shared between varieties were due to the collapse of similar
sequences during the star-contraction procedures.
Contrastingly, haplotypes found in Australian and
Mediterranean C. racemosa var. cylindracea belonged to the
same two remaining clusters and a large amount of them were
shared.

Discussion

Results reported here show an extreme diversity of bacterial
OTUs associated to C. racemosa (Table S2) both in its native
and in its invasive range, reaching or exceeding the already
high level of diversity reported for exceptional holobionts such
as coral or sponges systems [24]. Also, the diversity of the
bacterial community found in this study, overcomes the already
large diversity found for another siphonous alga – Bryopsis –
[31,32,33]. However, the use of DGGE in this study like for the
majority of studies aiming to characterize bacterial endophytes
thus far may have led to underestimation of the bacterial
diversity. This is usually more thoroughly revealed by NGS
approaches, possibly mainly due to the difficulty to resolve
overlapping bands in DGGE [34]. The impressive level of
bacterial diversity is still observed even when considering only
endophytic communities and not the putative epiphytic ones
forming the algal biofilm that here clusters with sediment
communities (Figure 1A and Figure 2).

The differentiation of endophytic communities among
varieties suggests that their composition is strongly influenced
by the nature of the host, with significant geographical
segregation also marginally revealed within groups (Table S4),
indicating either divergence or selection of some symbiont

Figure 1.  PCA representing weighted Unifrac analysis of C. racemosa samples from Mediterranean Sea and Australia
(invaded and native range), A-All samples including controls; B-Disinfected samples only.  Sample Codes: Al- Albany
(Australia), CB- Cottesloe Beach (Australia), Lg- Liguria (Greece), AP- Agios Pavlo (Greece), Ml- Malta, M-Marseille, I- Illetas
(Mallorca, Spain), EsC- Es Cargol (Mallorca, Spain), RI1- Rottnest Island 1 (Australia), RI2- Rottnest Island 2 (Australia), TN-
Tunisia, VF- Villefranche (France).
doi: 10.1371/journal.pone.0068429.g001
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lineages, or the influence of some environmentally acquired
strains in the community (Figure 1B). Several recent studies
demonstrated that, when epiphytic bacteria are isolated from
the host and compared among different species, host
phylogeny is more related to the composition of epiphytic
community than to the region of origin [14,15,32,35,36]. This
appears also true when bacteria composition changes
seasonally [16,36].

Our results therefore indicate algae can also be considered
as a reservoir of bacterial diversity, in tight association to their
hosts for endophytic ones which together with the similarity of
epiphytic and sediment communities, echoes the recent
findings on the siphonous green macroalga Bryopsis [31].
Besides, the strong clustering of communities according to
varieties and treatments is supported here by a high statistical
support thanks to the use of multiple replicates of high

Figure 2.  Venn diagram representing bacterial communities shared within the three different treatments.  Numbers on each
treatment represent the number of OTUs and percentages on overlapping areas represent the percentage of shared OTUs.
doi: 10.1371/journal.pone.0068429.g002
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throughput community characterization for both varieties in
each sampling location (Table S1, S3 and S4).

The origin and vector for the invasive variety of Caulerpa
racemosa has been, for a long time, an open question, with the
Red Sea or Australia as potential origins [28] and ballast water,
aquarium trade, or Lessepsian migration as possible vectors

and pathways. The central position in group B of Australian
communities, associated to the ‘invasive variety’ C. racemosa
var. cylindracea from the Western Mediterranean (Figures 1B,
3 and S2), confirms the most recent phylogenetic evidence
supporting its western Australian origin [28]. Group A,
encompassing communities characterized in other

Figure 3.  Maximum Likelihood tree from C. racemosa ITS calculated using the evolution Model TPM2+G with bootstraps
calculated after 1000 replicates. .  Alignments of each cluster were BLAST against Genebank nucleotide database and got the
highest hits with sequences from Verlaque et al. 2003 study [AY334305-Cluster A and AY173118-Cluster B] C. prolifera samples
from Mallorca were used as outgroup. Genbank accession numbers are represented within brackets.
doi: 10.1371/journal.pone.0068429.g003

Figure 4.  Heatmap representing distribution of the main classes among samples.  Scale bar represents the percentage of
sequences belonging to the OTUs represented in the heatmap.
doi: 10.1371/journal.pone.0068429.g004
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Mediterranean locations (Figures 1B, 3 and S2), is significantly
distinct and associated to the variety recognized as C.
racemosa var. turbinata-uvifera, an ‘ancient Mediterranean’
variety of unknown origin, first described in the early XXth

century in Tunis [28]. Besides this significant differentiation in
two clusters showing different community composition, the
bacterial community associated to the ‘invasive variety’ C.
racemosa var. cylindracea from the Western Mediterranean
indeed shared a higher percentage of the OTUS with the
Australian ones than with the communities associated to the
other Mediterranean variety, providing additional evidence of
their common origin (Figure 1B Table S4). In addition to the
clustering of communities as a whole, the phylogenetic analysis
of several of the most ubiquitous lineages of OTUs observed in
these communities also confirmed the dichotomy between the
communities associated to each variety of C. racemosa
(Figures 5 and S2). Finally the segregation of haplotypes within
some of these OTUs also showed a striking congruence with
their host lineage, also in line with the hypothesis of co-
evolution of host and some bacterial lineages (Figures 5 and
S2).

Besides possible transmission of some of the endophytes
during sexual events that cannot be inferred from results
reported here, vertical transmission is likely to be favored by
the partially clonal reproduction regime of C. racemosa through
clonal fragmentation. Clonality is a life history trait recognized
as a potential facilitator of invasion through enhanced
spreading capacity after founder events [4] it may be
suggested here that such mating system may also facilitate the
transmission of bacterial communities.

Bacterial characterization by 16S amplification does not
always yield the most detailed information about the strains
associated and the lower taxonomic levels are usually missed
[37], which sometimes makes the comparison between
bacteria associated to different hosts only possible at higher
taxonomic levels. We compared dominant lineages with those
characterized on Bryopsis [31], which is also a green
coenocytic algal genus. They found three main bacterial
lineages to be intimately associated to Bryopsis species where
endophytic communities were dominated by strains belonging
to Bacteroidetes, Flavobacteriaceae and Xanthomonadaceae
[31,32]. Contrastingly in the present study the two latter groups
are associated to non-disinfected samples, supporting those as

Figure 5.  Network of haplotypes from the most ubiquitous OTU (110) in the set of OTUs represented in Comamonadaceae
family phylogenetic tree.   Network was drawn without keeping distance of links proportional to the number of mutations, in order
to illustrate the clustering rather than the divergence
doi: 10.1371/journal.pone.0068429.g005
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surface associated bacteria, in agreement with previous
findings on other algal species (e.g. Fucus vesiculosus,
Gracilaria vermiculophylla and Ulva intestinalis) [36,38,39].
Stratil et al (2013) [16] found the relative abundance of
Rhodobacteraceae strains of epibacterial community to be
positively correlated to temperature changes in Fucus
vesiculosus, a brown alga. Our results show the presence of
strains belonging to Rhodobacterales order in almost all non-
disinfected samples (all having been collected during summer
periods) (Figure S1) which raises the hypothesis that the
importance of this strain in the biofilm during warmer periods
might be generalizable to some green algae in addition to the
brown lineage. A high percentage of Alphaproteobacteria
(Figure 4) and Bacteroides (Sphigobacteriales and
Flavobacteriales; Figure S1), similar to our epiphytic
communities, associated to F. vesiculosus during summer [36].
Interestingly, a negligible presence of Betaproteobacteria was
detected in our non-disinfected samples, similarly to on Fucus
vesiculosus [16], these were the most conspicuous OTUs
among our endophytic bacterial communities. These findings
suggest a endophytic specificity of this bacterial class [40], a
hypothesis that deserves further investigation requiring
analysis of endo versus epiphytic bacterial community on this
and other brown algae.

Bacterial metabolism cannot be inferred from 16S
characterization only, although it is difficult to ignore here that
some OTUs including the most dominant and ubiquitous ones
show high similarity (>99%) with bacterial strains characterized
for metabolic functions strikingly fitting the critical alterations of
sediment associated to the presence of Caulerpa sp., such as
nitrate reduction in anaerobic conditions [12,41] or sulfate
reduction. The invasiveness of Caulerpa species in the
Mediterranean involves the competitive displacement of
seagrasses, prominently Posidonia oceanica [5,6]. The
OTU110, for example, showed a high similarity (>99%) with
Alicycliphilus denitrificans, a nitrate-reducing
betaproteobacterium able to perform in anaerobic conditions
similar to those described in sediment colonized by Caulerpa
sp. [12]. Moreover, the endophytic flora of Caulerpa racemosa
also includes a variety of other functionally relevant bacteria,
including N2-fixing bacteria. Additionally, seagrasses in general,
and Posidonia oceanica in particular, are extremely sensitive to
sulfide, which is toxic to these plants [13,42,43]. A number of
OTUs identified in the endophytic flora of Caulerpa racemosa
are associated with sulfur cycling. Endophytic communities
exhibited a limited but ubiquitous presence of OTUs assigned
to the Desulfobacteraceae, that commonly reduce sulfate to
sulfide, with a specific cluster common to some Australian and
Mediterranean samples from the invasive group B. A high
diversity of OTUs assigned to Desulfobacterales was
additionally observed in non-disinfected samples and may also
be part of the biofilm associated with algae, known to
contribute to important metabolic processes [35]. Indeed,
Caulerpa species have been reported to enhance sulphate
reduction rates in the sediments they colonize, rendering them
unsuitable for sulfide-sensitive Posidonia oceanica [12]. The
results presented here suggest that the capacity of Caulerpa to

competitively exclude Posidonia oceanica by modifying the
sediments may be due to endophytic bacteria.

This study reveals a large diversity of bacterial communities
associated to the invasive C. racemosa, with a striking
differentiation of putative epiphytic communities forming the
biofilm and apparently largely similar to communities found in
the sediment compared to endophytic communities which
profile at all levels, from the whole community to the OTU one,
indicate tight association to their eukaryotic host. This
demonstrates the stability of bacterial communities during the
course of transport and invasion, also indicating their potential
to trace the origin of invasion. These results add to recent
evidence that the bacteria flora of macro-organisms, including
human, is unique, even at the level of individual, and provides
an important potential as a tool in identification of taxonomic
entities and pathways of migration [15,32,33,36,44].

These results also reveal some dominant and ubiquitous
bacterial strains that, although their metabolism cannot be
strictly inferred from 16S similarity alone, show striking
coherence with the reported impacts of Caulerpa colonization
on sediment biogeochemistry [12,45], eventually displacing
seagrass [12]. Also, a majority of strains, found in this study,
lying in the Betaproteobacteria class encompassing a large
number of known plant-symbiotic bacteria as legume-
nodulation bacteria in general and Burkholderia in particular
[40,46] may indicate the hypothesis of those to act as
enhancers of the invasive potential. This order includes
common endosymbionts classically associated to plants and
algae [47,48,49] and known to include nitrogen-fixing and plant/
algae growth enhancer endosymbionts [50].

Recent phylogenetic studies on the C. racemosa-peltata
complex to which this invasive variety belongs, revealed that
native range of C. racemosa var. cylindracea is much wider
than thought, with its presence confirmed in northeastern
Australia and New Caledonia [29] as well as a new possible
invaded area in Port Adelaide, South Australia [29]. In light of
these very new findings, we suggest that a more complete
sampling including these newly identified native and invaded
ranges would add further important information to more
precisely identify the origin of Mediterranean invasion.
However, our results, allied to other recent studies [32,33],
suggest that our understanding of biological invasions need to
evolve from a focus on the competitive capacities of the
invasive species, to consideration of the ‘meta-organism’, or
‘holobiont’ including the synergies between the host and
associated bacterial communities determining their adaptation
to their new environment and their capacity to outcompete
native organisms.

Materials and Methods

Sampling and samples preparation
No specific permissions were required for sampling Caulerpa

racemosa in the Mediterranean Sea locations, where this
species is considered an invasive and, as such, doesn't have
any law associated to its harvesting. Caulerpa racemosa is
native from Western Australia however is not considered nor
an endangered or protected species. A permit was provided to
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Dr. Gary Kendrick, from University of Western Australia, by the
Department of Environment and Conservation (DEC) for a
license to take or disturb flora for scientific purposes in all the
locations where the sampling was carried out (Albany, Perth
and Rottnest Island).

A total of 38 sampling units (SUs, set of interconnected
fronds, rhizoids and stolons, also called ‘ramets’) of Caulerpa
racemosa identified by the collectors as var. Cylindracea were
analyzed from 6 locations in the Mediterranean Sea and 3
locations in Southwestern Australia (Tables S1 and S2).
Sampling for each SU was done leaving at least a distance of
1m from each other. Each SU included several ramets with all
the morphological parts of the algae and was kept isolated in
individual zip-lock bags when sampled. Bags were then stored
at -80ºC until processing. Sediment samples were also
analyzed to be used as environmental control. Following a pilot
study indicating a tighter association of endophytic bacteria to
the host and a higher similarity of putative epiphytic ones to
environmental (sediment) samples, algal material was
disinfected adapting a “bleach protocol” [27,51] prior to
extraction, allowing discarding both epiphytic communities and
chloroplastidial DNA to concentrate on endophytic
communities. In order to still include a control for the exclusion
of epiphytic communities in the present study some of the SUs
were split in two complete fragments (each including one or
several complete ramets with all morphological part of the
algae), one was treated as detailed here above for the
characterization of endophytic communities while another set
of ramets was not disinfected and used as a control. Bacterial
DNA extraction was performed using FastDNA® SPIN Kit for
Soil (MP biomedicals LLC). Detailed Methodology for sampling
strategy and sample preparation is provided in Material and
Methods S1.

Next Generation sequencing and Metagenomics
analysis

Extracted DNA was submitted to Biocant (Cantanhede,
Portugal) to be analyzed through tag-Pyrosequencing (GS FLX
Titanium, 454-Life Sciences-Roche technology®) after
amplification with modified primers for region V4 of 16S rRNA
[52]. PCR amplification of the hypervariable V4 region of the
16S rRNA gene was performed using the 8bp key-tagged. After
sequences’ quality control and chimera removal by Chimera
Slayer, all analyses were performed using the program QIIME:
Quantitative Insights Into Microbial Ecology [53]. Sampling
diversity and specific richness was assessed by calculating
Chao1 and Shannon indexes. To assign each OTU to the
closest matching described ‘species’, BLASTN searches were
performed against SILVA database and sequences were
putatively assigned to a described taxa provided their blast was
associated to a minimum e-value threshold of 0.001 (default
value). Beta-diversity was also calculated on Qiime using the
weighted Unifrac algorithm which uses qualitative measures
the phylogenetic distance between sets of taxa in a
phylogenetic tree [54] and PCA 2D plots were constructed to
visualize data. Statistical differences between OTUs hits of
different replicates were assessed by One-way ANOSIM
performed using PAST (Ver. 2.16) [55]. 16S sequences from

the most common order and family to all disinfected samples
(Burkholderiales and Comamonadaceae respectively) were
used to build phylogenetic trees with Qiime’s script
make_phylogeny.py and using, by default, FastTree [56] and
root was chose by the tree method default from Qiime. An OTU
table was constructed by pooling the samples from different
treatments (disinfected, non-disinfected and sediment) and a
Venn diagram was constructed using Venny [57] in order to
assess percentage of OTUs shared between different
treatments. Metadata was submitted to The European
Nucleotide Archive (ENA) in the Sequence Read Archive
(SRA) and is available under the following accession number:
ERP002264 [http://www.ebi.ac.uk/ena/data/view/ERP002264].

Phylogenetic analysis of Caulerpa racemosa varieties
A 1100 bp amplified region containing the 3’ end of the 18S

rDNA, including the intron (100 to 108 bases), the ITS1 (112 to
136 bases), 5.8S rDNA, ITS2 (281 to 315 bases), and the 5’
end of the 28S rDNA from C. racemosa, was amplified
according to the PCR conditions by Verlaque et al. 2003 and
cloned using pGEM-T Easy. Sequences were aligned using
CLUSTAL X [58] and Maximum Likelihood analysis performed
on PHYML ver. 3.0 [59] after evolution model selected using
MODELTEST [60]. Alignments of each cluster were BLAST
against Genbank nucleotide database in order to identify the
most probable variety. Sequences were made available on
GenBank database with the accession numbers KC507512 –
KC5077539.

Network
The whole set of sequences corresponding to highly

represented OTUs were extracted in order to build a haplotype
network and screen the nature and phylogenetic relationships
of that ubiquitous family of OTUs, which are also most influent
the differentiation of both groups of communities, in order to
discriminate the lineages tightly associated to hosts rather than
habitat dependent, and to provide a first step towards the
identification of putative symbiotic lineages on the basis of their
blast identification and consequent taxonomic assignment. The
choice of a network of haplotype was driven by the short length
of sequences obtained through pyrosequencing (usually <250
bp), that do not allow robust phylogenetic reconstruction, and
by the question to be addressed. Rather than detailing the
evolutionary history of lineages we indeed aimed at testing for
identity and/or clustering of bacterial lineages between native
and Mediterranean invasive specimens of Caulerpa racemosa
var. cylindracea compared to those belonging to C. racemosa
var. turbinata-uvifera. Alignments were processed using
MUSCLE [61] alignment in Geneious Pro v 5.4 [62]. Highly
divergent sequences after alignment (>3%) were excluded.
Identical sequences were clustered in DNA Sp [63] and
exported to Roehl format in order to build a network of
haplotypes using the software Network [64]. The preprocessing
option implemented in Network was used for Star contraction
[64], using a radius maximum size of 5. Due the frequent
instances of multiple possible characters for numerous sites
(i.e. not binary), the median joining procedure was
implemented and followed by a MP procedure to remove the
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unnecessary median vectors and links [65] and reduce the
complexity of the network to improve its visualization.
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