2,160 research outputs found

    Assessment of a mature hydrocarbon field in SE Czech Republic for a CO2 storage pilot

    Get PDF
    Preparation and execution of a CO2 storage pilot project is one of the first logical steps in the effort to kick-start CCS in the region of Central & Eastern Europe, utilizing onshore geological structures for permanent CO2 storage. The main aims of this activity are to test the suitability of local geological structures and demonstrate the feasibility and safety of the technology to local stakeholders. The Czech-Norwegian CO2-SPICER project is an example of such developments. The target structure of CO2-SPICER – Zar−3 – is a hydrocarbon field situated in an erosional relict of fractured carbonates of Jurassic age on the SE slopes of the Bohemian Massif, covered by Paleogene deposits and Carpathian flysch nappes. The first stage of site assessment has been completed, and the article provides an overview of its results. Construction of a 3D geological model of the storage complex was the first important step on the route, preparing input for subsequent reservoir simulations of the field history and planned CO2 injection. Reservoir assessment is also focusing on specific features of the fractured-vuggy reservoir and accounting for the effects associated with CO2 injection, including geochemistry and geomechanics. Geochemical studies focus on fluid-rock interactions, and geomechanical ones on formation integrity and fracture mechanics under reservoir pressure build-up and cooling of the formation by injected CO2. Risk assessment is another component of the project, aiming at identifying potential leakage pathways and assessing consequences for the area of interest. Preparatory work for the site monitoring plan includes applicability analysis of various monitoring methods, supported by execution of baseline monitoring of selected phenomena, in particular composition of soil gas, natural and induced seismicity and properties of shallow groundwater. The project also includes evaluation of advanced reservoir containment monitoring technologies including time-lapse pressure transient analysis. While the key actions are directed towards the piloting activities, the project also looks beyond to full-field implementation and potential to establish a regional CCS cluster.acceptedVersio

    Hospital survey on patient safety culture (HSOPSC) : a multi-method approach for target-language instrument translation, adaptation, and validation to improve the equivalence of meaning for cross-cultural research

    Get PDF
    Altres ajuts: This research project was partially funded through a research dissemination grant from the Universidad Cooperativa de Colombia received by Dr. Doriam E. Camacho-Rodríguez.The Hospital Survey on Patient Safety Culture (HSOPSC) is widely utilized in multiple languages across the world. Despite culture and language variations, research studies from Latin America use the Spanish language HSOPSC validated for Spain and the United States. Yet, these studies fail to report the translation method, cultural adaptation process, and the equivalence assessment strategy. As such, the psychometric properties of the HSOPSC are not well demonstrated for cross-cultural research in Latin America, including Peru. The purpose of this study was to develop a target-language HSOPSC for cross-cultural research in Peru that asks the same questions, in the same manner, with the same intended meaning, as the source instrument. This study used a mixed-methods approach adapted from the translation guideline recommended by Agency for Healthcare Research and Quality. The 3-phase, 7-step process incorporated translation techniques, pilot testing, cognitive interviews, clinical participant review, and subject matter expert evaluation. The instrument was translated and evaluated in 3 rounds of cognitive interview (CI). There were 37 problem items identified in round 1 (14 clarity, 12 cultural, 11 mixed); and resolved to 4 problems by round 3. The pilot-testing language clarity inter-rater reliability was S-CVI/Avg = 0.97 and S-CVI/UA = 0.86; and S-CVI/Avg = 0.96 and S-CVI/UA = 0.83 for cultural relevance. Subject matter expert agreement in matching items to the correct dimensions was substantially equivalent (Kappa = 0.72). Only 1 of 12 dimensions had a low Kappa (0.39), borderline fair to moderate. The remaining dimensions performed well (7 = almost perfect, 2 = substantial, and 2 = moderate). The HSOPSC instrument developed for Peru was markedly different from the other Spanish-language versions. The resulting items were equivalent in meaning to the source, despite the new language and different cultural context. The analysis identified negatively worded items were problematic for target-language translation. With the limited literature about negatively worded items in the context of cross-cultural research, further research is necessary to evaluate this finding and the recommendation to include negatively worded items in instruments. This study demonstrates cross-cultural research with translated instruments should adhere to established guidelines, with cognitive interviews, based on evidence-based strategies

    Exoplanet Diversity in the Era of Space-based Direct Imaging Missions

    Full text link
    This whitepaper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characterizing Earth-like worlds around Sun-like stars. However, we will also be able to characterize companion planets in the system simultaneously. This will not only provide a contextual picture with regards to our Solar system, but also presents a unique opportunity to observe size dependent planetary atmospheres at different orbital distances. We propose a preliminary scheme based on chemical behavior of gases and condensates in a planet's atmosphere that classifies them with respect to planetary radius and incident stellar flux.Comment: A white paper submitted to the National Academy of Sciences Exoplanet Science Strateg

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe

    SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    Get PDF
    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z<0.7 and at z~2.5. SEGUE-2, which is now completed, measured medium-resolution (R=1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE will obtain high-resolution (R~30,000), high signal-to-noise (S/N>100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)Comment: Revised to version published in The Astronomical Journa

    Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

    Get PDF
    Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery
    corecore