428 research outputs found
Recommended from our members
Epigenetic Interactions and the Structure of Phenotypic Variation in the Cranium
Understanding the developmental and genetic
basis for evolutionarily significant morphological variation in
complex phenotypes such as themammalian skull is a challenge
because of the sheer complexity of the factors involved. We
hypothesize that even in this complex system, the expression of
phenotypic variation is structured by the interaction of a few key
developmental processes. To test this hypothesis, we created a
highly variable sample of crania using four mouse mutants and
their wild-type controls from similar genetic backgrounds with
developmental perturbations to particular cranial regions. Using
geometricmorphometricmethods we compared patterns of size,
shape, and integration in the sample within and between the
basicranium, neurocranium, and face. The results highlight
regular and predictable patterns of covariation among regions of
the skull that presumably reflect the epigenetic influences of the
genetic perturbations in the sample. Covariation between
relative widths of adjoining regions is the most dominant factor,
but there are other significant axes of covariation such as the
relationship between neurocranial size and basicranial flexion.
Although there are other sources of variation related to
developmental perturbations not analyzed in this study, the
patterns of covariation created by the epigenetic interactions
evident in this sample may underlie larger scale evolutionary
patterns in mammalian craniofacial form.Anthropolog
Non-Coexistence of Infinite Clusters in Two-Dimensional Dependent Site Percolation
This paper presents three results on dependent site percolation on the square
lattice. First, there exists no positively associated probability measure on
{0,1}^{Z^2} with the following properties: a) a single infinite 0cluster exists
almost surely, b) at most one infinite 1*cluster exists almost surely, c) some
probabilities regarding 1*clusters are bounded away from zero. Second, we show
that coexistence of an infinite 1*cluster and an infinite 0cluster is almost
surely impossible when the underlying probability measure is ergodic with
respect to translations, positively associated, and satisfies the finite energy
condition. The third result analyses the typical structure of infinite clusters
of both types in the absence of positive association. Namely, under a slightly
sharpened finite energy condition, the existence of infinitely many disjoint
infinite self-avoiding 1*paths follows from the existence of an infinite
1*cluster. The same holds with respect to 0paths and 0clusters.Comment: 17 pages, 1 figur
A fluctuating energy-momentum may produce an unstable world
Quantum gravitational effects may induce stochastic fluctuations in the
structure of space-time, to produce a characteristic foamy structure. It has
been known for some time now that these fluctuations may have observable
consequencies for the propagation of cosmic ray particles over cosmological
distances. We note here that the same fluctuations, if they exist, imply that
some decay reactions normally forbidden by elementary conservation laws, become
kinematically allowed, inducing the decay of particles that are seen to be
stable in our universe. Due to the strength of the prediction, we are led to
consider this finding as the most severe constraint on the classes of models
that may describe the effects of gravity on the structure of space-time. We
also propose and discuss several potential loopholes of our approach, that may
affect our conclusions. In particular, we try to identify the situations in
which despite a fluctuating energy-momentum of the particles, the reactions
mentioned above may not take place.Comment: 12 pages, no figures, accepted for publication in Astroparticle
Physic
Quantum-Gravity phenomenology and high energy particle propagation
Quantum-gravity effects may introduce relevant consequences for the
propagation and interaction of high energy cosmic rays particles. Assuming the
space-time foamy structure results in an intrinsic uncertainty of energy and
momentum of particles, we show how low energy (under GZK) observations can
provide strong constraints on the role of the fluctuating space-time structure.Comment: 6 pages, to appear in the Proc. Cosmic Ray International Seminar CRIS
2004, Catania, Italy, May 31 - June 4, 200
On the reliability of a simple method for scoring phenotypes to estimate heritability: A case study with pupal color in Heliconius erato phyllis, Fabricius 1775 (Lepidoptera, Nymphalidae)
In this paper, two methods for assessing the degree of melanization of pupal exuviae from the butterfly Heliconius erato phyllis, Fabricius 1775 (Lepidoptera, Nymphalidae, Heliconiini) are compared. In the first method, which was qualitative, the exuviae were classified by scoring the degree of melanization, whereas in the second method, which was quantitative, the exuviae were classified by optical density followed by analysis with appropriate software. The heritability (h2) of the degree of melanization was estimated by regression and analysis of variance. The estimates of h 2 were similar with both methods, indicating that the qualitative method could be particularly suitable for field work. The low estimates obtained for heritability may have resulted from the small sample size (n = 7-18 broods, including the parents) or from the allocation-priority hypothesis in which pupal color would be a lower priority trait compared to morphological traits and adequate larval development
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV
A search is presented for physics beyond the standard model (BSM) in final
states with a pair of opposite-sign isolated leptons accompanied by jets and
missing transverse energy. The search uses LHC data recorded at a
center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to
an integrated luminosity of approximately 5 inverse femtobarns. Two
complementary search strategies are employed. The first probes models with a
specific dilepton production mechanism that leads to a characteristic kinematic
edge in the dilepton mass distribution. The second strategy probes models of
dilepton production with heavy, colored objects that decay to final states
including invisible particles, leading to very large hadronic activity and
missing transverse energy. No evidence for an event yield in excess of the
standard model expectations is found. Upper limits on the BSM contributions to
the signal regions are deduced from the results, which are used to exclude a
region of the parameter space of the constrained minimal supersymmetric
extension of the standard model. Additional information related to detector
efficiencies and response is provided to allow testing specific models of BSM
physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
- âŚ