105 research outputs found
Testing and Visualizing Strategic Consensus Within and Between Teams
Research in strategic consensus mostly focuses on the degree of consensus about organizational strategy within a team and does not include other important elements of strategic consensus such as more fine-grained analysis of what different group members agree and disagree on, between-group consensus, or significance testing of differences in consensus (e.g., to evaluate a strategic intervention). We propose a new analytical approach to study strategic consensus to address these issues and to visualize strategic consensus in an intuitive and easy-to-grasp fashion. Using data from a field study, we also provide an illustration of the proposed methodology which includes a test of the effectiveness of a consensus-creating intervention. We conclude with guidelines for research and practice on utilizing the proposed methodology
Quantitative CMR markers of impaired vascular reactivity associated with age and peripheral artery disease
Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants
Owing to the increasing importance of aquaculture to compensate for the progressive worldwide reduction of natural fish and to the fact that several fish farming plants often suffer from heavy financial losses due to the development of infections caused by microbial pathogens, including multidrug resistant bacteria, more environmentally-friendly strategies to control fish infections are urgently needed to make the aquaculture industry more sustainable. The aim of this review is to briefly present the typical fish farming diseases and their threats and discuss the present state of chemotherapy to inactivate microorganisms in fish farming plants as well as to examine the new environmentally friendly approaches to control fish infection namely phage therapy and photodynamic antimicrobial therapy
Oral abstracts of the 21st International AIDS Conference 18-22 July 2016, Durban, South Africa
The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n=122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression.Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed.Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants.Expression of ‘exhaustion’ or ‘immune checkpoint’ markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches
HIV-1 promoter activation following an oxidative stress mediated by singlet oxygen
Various biological processes, such as photosensitization or inflammatory reactions, can generate singlet oxygen (O-1(2)) as one of the major oxidative species. Because this oxidant can be generated either extracellularly or intracellularly, it can cause severe damage to various biological macromolecules, even to those deeply embedded inside the cells such as DNA. Sublethal biological modifications induced by different DNA-damaging agents can promote various cellular responses initiated by the activation of various cellular genes and certain heterologous viruses. Since O-1(2) fulfils essential prerequisites for a genotoxic substance, we have examined the effects of an oxidative stress, mediated by this species, on cells harbouring a heterologous promoter-leader sequence derived from the human immunodeficiency virus type 1 (HIV-1). Our results demonstrate that HIV-1 long terminal repeat (LTR), integrated into the cellular I)NA of epithelial cells, can be transactivated following an oxidative stress mediated by O-1(2). In addition, using HIV-1 latently infected promonocytes or lymphocytes, it can be shown that virus reactivation can be induced through a sublethal dose of O-1(2) generated intracellularly. An extracellular generation of O-1(2) can promote a substantial lethal effect without HIV-1 reactivation. These data may be relevant to the understanding of the events converting a latent infection into a productive one and to the appearance of the acquired immune deficiency syndrome
Experimental and Numerical Evaluation of SnAgCu and SnPb Solders Using a MicroBGA Under Accelerated Temperature Cycling Conditions
The derivation and definition of the ‘Southern Upland Fault’: a review of the Midland Valley – Southern Uplands terrane boundary
Cdk5: Multitasking between physiological and pathological conditions
Cyclin-dependent kinase 5 (Cdk5) is a peculiar proline-directed serine/threonine kinase. Unlike the other members of the Cdk family, Cdk5 is not directly involved in cell cycle regulation, being normally associated with neuronal processes such as migration, cortical layering and synaptic plasticity. This kinase is present mainly in post-mitotic neurons and its activity is tightly regulated by the interaction with the specific activators, p35 and p39.
Despite its pivotal role in CNS development, Cdk5 dysregulation has been implicated in different pathologies, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and, most recently, prion-related encephalopathies (PRE). In these neurodegenerative conditions, Cdk5 overactivation and relocalization occurs upon association with p25, a truncated form of the normal activator p35. This activator switching will cause a shift in the phosphorylative pattern of Cdk5, with an alteration both in targets and activity, ultimately leading to neuronal demise.
In AD and PRE, two disorders that share clinical and neuropathological features, Cdk5 dysregulation is a linking event between the major neuropathological markers: amyloid plaques, tau hyperphosphorylation and synaptic and neuronal loss. Moreover, this kinase was shown to be involved in abortive cell cycle re-entry, a feature recently proposed as a possible step in the neuronal apoptosis mechanism of several neurological diseases.
This review focuses on the role of Cdk5 in neurons, namely in the regulation of cytoskeletal dynamics, synaptic function and cell survival, both in physiological and in pathological conditions, highlighting the relevance of Cdk5 in the main mechanisms of neurodegeneration in Alzheimer's disease and other brain pathologies
A novel Heucobacter SP isolated from humans with diarrhea: An example of an emerging pathogen
- …
