192 research outputs found

    Aluminum modulation of proteolytic activities

    Get PDF
    The effect of aluminum ions on the activity of proteolyic activities, mainly serine proteases and calpains, has been examined. Aluminum affects the biological activity of proteolytic activities either through a direct effect on the enzyme molecule or through a deregulation of the control mechanisms acting on them. Binding of the ion, most likely results in molecular rearrangements affecting both the substrates binding site and the site involved in the recognition of macromolecular inhibitors. As whole, the data reported clearly indicate that aluminum significatively affects the intracellular protein turnover, most likely triggering catastrophic events for the cellular life. The physiopathological significance of these effects has been discussed, in particular for neurological disorders (the Alzheimer's disease included) where an imbalance of proteolytic as well as antiproteolytic systems appears a crucial event both for the formation of neuritic plaques and neurofibrillary tangles which are the major hallmarks of the disease. © 2002 Elsevier Science B.V. All rights reserved

    The effects of beta-blockers on dobutamine-atropine stress echocardiography: early protocol versus standard protocol

    Get PDF
    BACKGROUND: To study the effects of Beta-blockers during Dobutamine Stress Echocardiography (DSE) comparing the hemodynamic benefits of an early administration of atropine in patients taking or not Beta-blockers. METHODS: One hundred and twenty-one patients were submitted to dobutamine stress echocardiography for the investigation of myocardial ischemia. The administration of atropine was randomized into two groups: A or B (early protocol when atropine was administered at 10 and 20 mcg/kg/min of dobutamine, respectively) and C (standard protocol with atropine at 40 mcg/kg/min of dobutamine). Analysis of the effects of Beta-blockers was done regarding the behavior pattern of heart rate and blood pressure, test time, number of conclusive and inconclusive (negative sub-maximum test) results, total doses of atropine and dobutamine, and general complications. RESULTS: Beta-blocked patients who received early atropine (Group A&B) had a significantly lower double product (p = 0.008), a higher mean test time (p = 0.010) and required a higher dose of atropine (p = 0.0005) when compared to the patients in this group who were not Beta-blocked. The same findings occurred in the standard protocol (Group C), however the early administration of atropine reduced test time both in the presence and absence of this therapy (p = 0.0001). The patients with Beta-blockers in Group A&B had a lower rate of inconclusive tests (26%) compared to those in Group C (40%). Complications were similar in both groups. CONCLUSION: The chronotropic response during dobutamine stress echocardiography was significantly reduced with the use of Beta-blockers. The early administration of atropine optimized the hemodynamic response, reduced test time in patients with or without Beta-blockers and reduced the number of inconclusive tests in the early protocol

    A review of the epidemiology of oral and pharyngeal carcinoma: update

    Get PDF
    Oral and pharyngeal cancers are the sixth most common cancers internationally. In the United States, there are about 30,000 new cases of oral and pharyngeal cancers diagnosed each year. Furthermore, survival rates for oral and pharyngeal cancers have not significantly improved over the last three decades. This review examines the scientific literature surrounding the epidemiology of oral and pharyngeal cancers, including but not limited to risk factors, disparities, preventative factors, and the epidemiology in countries outside the United States. The literature review revealed that much of the research in this field has been focused on alcohol, tobacco, and their combined effects on oral and pharyngeal cancers. The literature on oral and pharyngeal cancer disparities among racial groups also appears to be growing. However, less literature is available on the influence of dietary factors on these cancers. Finally, effective interventions for the reduction of oral and pharyngeal cancers are discussed

    The mechanism of functional up-regulation of P2X3 receptors of trigeminal sensory neurons in a genetic mouse model of Familial Hemiplegic Migraine type 1 (FHM-1)

    Get PDF
    A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the \u3b11 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT) neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining) migraine attacks, such as TNF\u3b1, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNF\u3b1 potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNF\u3b1 receptor TNFR2. However, sustained TNF\u3b1 neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNF\u3b1 does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNF\u3b1 enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP. \ua9 2013 Hullugundi et al

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    How to Detect X-Rays and Gamma-Rays from Space: Optics and Detectors

    Get PDF
    The measurable quantities of the sky’s light, for any wavelength, are energy, position, arrival time, and polarization. Each of them reveal different information about the science target (e.g. gas dynamics, state and distribution of the matter, temperature, luminosity) and require specific detecting solutions. In the study of X-rays and gamma-rays up to the TeV regime, their absorption by the atmosphere (by 50% at 30 km altitude for 1 MeV photon) requires the development of space applications. The science goals of the mission define which technological benchmark should be maximised (e.g. energy or spatial resolution), but the final design of high energy instruments is the result of a trade-off analysis among the detection specifications, the need for space-borne electronic systems and materials, and the limited resources in mass budget, electrical power, and telemetry rates

    Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

    Get PDF
    We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies

    Alabandite in ureilite Frontier Mountain 95028.

    No full text

    Frontier Mountain 95028: A new low-shock ureilite close to Allan Hills 78019.

    No full text
    corecore