27 research outputs found

    Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008

    Get PDF
    The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.Comment: 13 pages, accepted for publication in MNRA

    An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102

    Get PDF
    Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin(1-3). The only known repeating fast radio burst source(4-6)-FRB 121102-has been localized to a star-forming region in a dwarf galaxy(7-9) at redshift 0.193 and is spatially coincident with a compact, persistent radio source(7,10). The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from + 1.46 x 10(5) radians per square metre to + 1.33 x 10(5) radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed(11,12) only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole(10). The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula(13) or supernova remnant(14) surrounding a young neutron star.</p

    Teraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC

    Get PDF
    Aims. We investigate the extension of the very high-energy spectral tail of the Crab Pulsar at energies above 400 GeV. Methods. We analyzed similar to 320 h of good-quality Crab data obtained with the MAGIC telescope from February 2007 to April 2014. Results. We report the most energetic pulsed emission ever detected from the Crab Pulsar reaching up to 1.5 TeV. The pulse profile shows two narrow peaks synchronized with those measured in the GeV energy range. The spectra of the two peaks follow two different power-law functions from 70GeV up to 1.5 TeV and connect smoothly with the spectra measured above 10GeV by the Large Area Telescope (LAT) on board the Fermi satellite. When making a joint fit of the LAT and MAGIC data above 10 GeV the photon indices of the spectra differ by 0.5 +/- 0.1. Conclusions. Using data from the MAGIC telescopes we measured the most energetic pulsed photons from a pulsar to date. Such TeV pulsed photons require a parent population of electrons with a Lorentz factor of at least 5x10(6). These results strongly suggest IC scattering off low-energy photons as the emission mechanism and a gamma-ray production region in the vicinity of the light cylinder

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Observations of Sagittarius A* during the pericenter passage of the G2 object with MAGIC

    Get PDF
    Context. We present the results of a multi-year monitoring campaign of the Galactic center (GC) with the MAGIC telescopes. These observations were primarily motivated by reports that a putative gas cloud (G2) would be passing in close proximity to the super-massive black hole (SMBH), associated with Sagittarius A*, located at the center of our galaxy. This event was expected to give astronomers a unique chance to study the effect of in-falling matter on the broad-band emission of a SMBH.Aims. We search for potential flaring emission of very-high-energy (VHE; >= 100 GeV) gamma rays from the direction of the SMBH at the GC due to the passage of the G2 object. Using these data we also study the morphology of this complex region.Methods. We observed the GC region with the MAGIC Imaging Atmospheric Cherenkov Telescopes during the period 2012-2015, collecting 67 h of good-quality data. In addition to a search for variability in the flux and spectral shape of the GC gamma-ray source, we use a point-source subtraction technique to remove the known gamma-ray emitters located around the GC in order to reveal the TeV morphology of the extended emission inside that region.Results. No effect of the G2 object on the VHE gamma-ray emission from the GC was detected during the 4 yr observation campaign. We confirm previous measurements of the VHE spectrum of Sagittarius A*, and do not detect any significant variability of the emission from the source. Furthermore, the known VHE gamma-ray emitter at the location of the supernova remnant G0.9+0.1 was detected, as well as the recently discovered VHE source close to the GG radio arc

    Investigating the peculiar emission from the new VHE gamma-ray source H1722+119

    Get PDF
    The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E > 100 GeV) gamma-ray band with a statistical significance of 5.9s. The integral flux above 150 GeV is estimated to be (2.0 +/- 0.5) per cent of the Crab nebula flux. We used contemporaneous high energy (HE, 100 MeV < E < 100 GeV) gamma-ray observations from Fermi-Large Area Telescope to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z = 0.34 +/- 0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the Owens Valley Radio Observatory telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution of H1722+119 shows surprising behaviour in the similar to 3 x 10(14)-10(18) Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model

    Insights into the emission of the blazar 1ES 1011+496 through unprecedented broadband observations during 2011 and 2012

    Get PDF
    Context. 1ES 1011+496 (z = 0.212) was discovered in very high-energy (VHE, E > 100 GeV) gamma rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to an incomplete characterization of the broadband spectral energy distribution (SED). Aims. We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron self-Compton (SSC) scenario is able to explain the observed broadband spectrum.Methods. We analyzed data in the range from VHE to radio data from 2011 and 2012 collected by MAGIC, Fermi-LAT, Swift, KVA, OVRO, and Metsahovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE.Results. The VHE spectrum was fit with a simple power law with a photon index of 3.69 +/- 0.22 and a flux above 150 GeV of (1.46 +/- 0.16) x 10(-11) ph cm(-2) s(-1). The source 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of 1.8 +/- 0.4 c, which is the highest speed statistically significant measured so far in a high-frequency-peaked BL Lac.Conclusions. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV, which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field with respect to the optical emission

    VizieR Online Data Catalog: Mrk 421 multi-wavelength variability, 2007-2009 (Ahnen+, 2016)

    Get PDF
    Data of Mrk 421 are presented for the following instruments and bands from radio to very high energy gamma-rays: Metsahovi (37GHz), OVRO (15GHz), GASP (R band), RXTE/ASM (2-10keV), Swift/BAT(15-50keV), MAGIC (>400 GeV). The observation period is from 10th February 2007 (MJD 54141) to 23rd July 2009 (MJD 55035). Figure 2 includes the light curves of the above mentioned instruments. Figure 3 and 4 show the fractional variability F_var for these light curves of the above mentioned light curves for the whole time span (Fig. 3) and for the separate time spans P1, P2, P3 (Fig. 4). (3 data files). <P /

    Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009

    Get PDF
    Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the gamma-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV to hard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the gamma-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios.Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature.Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (> 100 GeV, VHE) gamma-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE gamma rays).Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE gamma rays do not make a dominant contribution to the similar to 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed gamma-ray flaring activity, with the EVPA rotation coincident with the first gamma-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties
    corecore