14 research outputs found

    The parallel lives of polysaccharides in food and pharmaceutical formulations

    Get PDF
    The present opinion article discusses how polysaccharide structures can be used in both food and pharmaceutical formulations. We distinguish two regions depending on moisture content where polysaccharides form structures with distinct functional properties. Some trends in key areas of active research are assessed and in particular edible films, encapsulation, polycrystalline polysaccharides, protein-polysaccharide coacervation and fluid gels. We unveil that the physicochemical principles that are shared across the food and pharmaceutical disciplines provide a great opportunity for cross-disciplinary collaboration. We finally argue that such co-operation will help tackling polysaccharide functionality issues that are encountered in both areas

    Optimizing Fully Anisotropic Elastic Propagation on 2nd Generation Intel Xeon Phi Processors

    Get PDF
    This work shows several optimization strategies evaluated and applied to an elastic wave propagation engine, based on a Fully Staggered Grid, running on the latest Intel Xeon Phi processors, the second generation of the product (code-named Knights Landing). Our fully optimized code shows a speed-up of about 4x when compared with the same algorithm optimized for the previous generation processor.Authors also thank Repsol for the permission to publish the present research, carried out at the Repsol-BSC Research Center. This work has received funding from the European Union's Horizon 2020 Programme (2014-2020) and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP) under the HPC4E Project (www.hpc4e.eu), grant agreement n.â—¦ 689772. * Other brands and names are the property of their respective owners.Peer ReviewedPostprint (author's final draft

    Suspended manufacture of biological structures

    Get PDF
    We present a novel method of extrusion-based ALM for the production of cell-laden strucutres from low viscosity polymers. The traditional planar print bed is replaced with a bed of micoparticulate fluid gel. During the extrusion process, the fluid gel is displaced whilst providing a support strucutre for the low viscosity material allowing manufacture of relatively complex geometries. The extruded structure can then be easily removed from this self-healing fluid bed. For this study, a bi-layered cell-seeded construct was produced to model the osteochondral junction. Osteochondral plugs were produced by the addition of chondrocytes and osteoblasts to 1.5%w/v gellan and 1.5%w/v gellan-5% nano-hydroxyapatite respectively. The consecutive extrusion of these two solutions into the fluid bed followed by further ionic crosslinking produced the bi-layered construct that was implant into a femoral condyle defect in vitro. Cell viability following extrusion was confirmed using calcein AM/PI live/dead staining showing excellent viability. Constructs were then sectioned, and qRT-PCR was performed, showing a native collagen phenotype across the construct with evidence of matrix markers in the cartilage-like region which were also identified using fluroescent-IHC. Constructs were also tested for their bulk relaxation properties. Addition of nano-hydroxyapatite in the bone-like region resulted in a faster, more elastic relaxation than gellan alone, something that has previously been reported to favour osteogenic differentiation. We have demonstrated the efficacy of suspended manufacturing to maintain viability and phenotype of two populations of human primary cells in a single construct thus emulating the structure of the osteochondral junction. Please click Additional Files below to see the full abstract

    The concept of transport capacity in geomorphology

    Get PDF
    The notion of sediment-transport capacity has been engrained in geomorphological and related literature for over 50 years, although its earliest roots date back explicitly to Gilbert in fluvial geomorphology in the 1870s and implicitly to eighteenth to nineteenth century developments in engineering. Despite cross fertilization between different process domains, there seem to have been independent inventions of the idea in aeolian geomorphology by Bagnold in the 1930s and in hillslope studies by Ellison in the 1940s. Here we review the invention and development of the idea of transport capacity in the fluvial, aeolian, coastal, hillslope, débris flow, and glacial process domains. As these various developments have occurred, different definitions have been used, which makes it both a difficult concept to test, and one that may lead to poor communications between those working in different domains of geomorphology. We argue that the original relation between the power of a flow and its ability to transport sediment can be challenged for three reasons. First, as sediment becomes entrained in a flow, the nature of the flow changes and so it is unreasonable to link the capacity of the water or wind only to the ability of the fluid to move sediment. Secondly, environmental sediment transport is complicated, and the range of processes involved in most movements means that simple relationships are unlikely to hold, not least because the movement of sediment often changes the substrate, which in turn affects the flow conditions. Thirdly, the inherently stochastic nature of sediment transport means that any capacity relationships do not scale either in time or in space. Consequently, new theories of sediment transport are needed to improve understanding and prediction and to guide measurement and management of all geomorphic systems

    Optimizing Fully Anisotropic Elastic Propagation on 2nd Generation Intel Xeon Phi Processors

    No full text
    This work shows several optimization strategies evaluated and applied to an elastic wave propagation engine, based on a Fully Staggered Grid, running on the latest Intel Xeon Phi processors, the second generation of the product (code-named Knights Landing). Our fully optimized code shows a speed-up of about 4x when compared with the same algorithm optimized for the previous generation processor.Authors also thank Repsol for the permission to publish the present research, carried out at the Repsol-BSC Research Center. This work has received funding from the European Union's Horizon 2020 Programme (2014-2020) and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP) under the HPC4E Project (www.hpc4e.eu), grant agreement n.â—¦ 689772. * Other brands and names are the property of their respective owners.Peer Reviewe

    Nomograms for morbidity and mortality after oncologic colon resection in the enhanced recovery era: results from a multicentric prospective national study

    No full text
    Purpose: Predicting postoperative complications and mortality is important to plan the surgical strategy. Different scores have been proposed before to predict them but none of them have been yet implemented into the routine clinical practice because their difficulties and low accuracy with new surgical strategies and enhanced recovery. The main aim of this study is to identify risk factors for postoperative morbidity and mortality after colonic resection (CR) without protective stomas, in order to develop a comprehensive, up-to-date, simple, reliable, and applicable model for the preoperative assessment of patients with colon cancer. Methods: Multivariable analysis was performed to identify risk factors for 60-day morbidity and mortality. Coefficients derived from the regression model were used in the nomograms to predict morbidity and mortality. Results: Three thousand one hundred ninety-three patients from 52 hospitals were included into the analysis. Sixty-day postoperative complications rate was 28.3% and the mortality rate was 3%. In multivariable analysis the independent risk factors for postoperative complications were age, male gender, liver and pulmonary diseases, obesity, preoperative albumin, anticoagulant treatment, open surgery, intraoperative complications, and urgent surgery. Independent risk factors for mortality were age, preoperative albumin anticoagulant treatment, and intraoperative complications. Conclusions: Risk factors for morbidity and mortality after CR for cancer were identified and two easy predictive tools were developed. Both of them could provide important information for preoperative consultation and surgical planning in the time of enhance recovery
    corecore