63 research outputs found

    Duffy Negative Antigen Is No Longer a Barrier to Plasmodium vivax – Molecular Evidences from the African West Coast (Angola and Equatorial Guinea)

    Get PDF
    Recent reports of Plasmodium vivax infections, the most widely distributed species of human malaria, show that this parasite is evolving and adapting, becoming not only more aggressive but also more frequent in countries where it was not present in the past, becoming, therefore, a major source of concern. Thus, it is extremely important to perform new studies of its distribution in West and Central Africa, where there are few reports of its presence, due to the high prevalence of Duffy-negative individuals. The aim of this study was to investigate the presence of P. vivax in Angola and in Equatorial Guinea, using blood samples and mosquitoes. The results showed that P. vivax seems to be able to invade erythrocytes using receptors other than Duffy, and this new capacity is not exclusive to one strain of P. vivax, since we have found samples infected with two different strains: VK247 and classic. Additionally we demonstrated that the parasite has a greater distribution than previously thought, calling for a reevaluation of its worldwide distribution

    Long-term thermal sensitivity of Earth’s tropical forests

    Get PDF
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Zika Brazilian Cohorts (ZBC) Consortium: Protocol for an Individual Participant Data Meta-Analysis of Congenital Zika Syndrome after Maternal Exposure during Pregnancy.

    Get PDF
    Despite great advances in our knowledge of the consequences of Zika virus to human health, many questions remain unanswered, and results are often inconsistent. The small sample size of individual studies has limited inference about the spectrum of congenital Zika manifestations and the prognosis of affected children. The Brazilian Zika Cohorts Consortium addresses these limitations by bringing together and harmonizing epidemiological data from a series of prospective cohort studies of pregnant women with rash and of children with microcephaly and/or other manifestations of congenital Zika. The objective is to estimate the absolute risk of congenital Zika manifestations and to characterize the full spectrum and natural history of the manifestations of congenital Zika in children with and without microcephaly. This protocol describes the assembly of the Consortium and protocol for the Individual Participant Data Meta-analyses (IPD Meta-analyses). The findings will address knowledge gaps and inform public policies related to Zika virus. The large harmonized dataset and joint analyses will facilitate more precise estimates of the absolute risk of congenital Zika manifestations among Zika virus-infected pregnancies and more complete descriptions of its full spectrum, including rare manifestations. It will enable sensitivity analyses using different definitions of exposure and outcomes, and the investigation of the sources of heterogeneity between studies and regions
    corecore