1,879 research outputs found
Electrically Switchable Photonic Molecule Laser
We have studied the coherent intercavity coupling of the evanescent fields of
the whispering gallery modes of two terahertz quantum-cascade lasers
implemented as microdisk cavities. The electrically pumped single-mode
operating microcavities allow to electrically control the coherent mode
coupling for proximity distances of the cavities up to 30-40 \mu\m. The optical
emission of the strongest coupled photonic molecule can be perfectly switched
by the electrical modulation of only one of the coupled microdisks. The
threshold characteristics of the strongest coupled photonic molecule
demonstrates the linear dependence of the gain of a quantum-cascade laser on
the applied electric field.Comment: 4 pages, 4 figure
Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering
We have measured the spin-dependent structure function in inclusive
deep-inelastic scattering of polarized muons off polarized protons, in the
kinematic range and . A
next-to-leading order QCD analysis is used to evolve the measured
to a fixed . The first moment of at is .
This result is below the prediction of the Ellis-Jaffe sum rule by more than
two standard deviations. The singlet axial charge is found to be . In the Adler-Bardeen factorization scheme, is
required to bring in agreement with the Quark-Parton Model. A
combined analysis of all available proton and deuteron data confirms the
Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical
Review
International survey on the management of esophageal atresia
IntroductionBecause many aspects of the management of esophageal atresia (EA) are still controversial, we evaluated the practice patterns of this condition across Europe. MethodsA survey was completed by 178 delegates (from 45 [27 European] countries; 88% senior respondents) at the EUPSA-BAPS 2012. ResultsApproximately 66% of respondents work in centers where more than five EA repairs are performed per year. Preoperatively, 81% of respondents request an echocardiogram, and only 43% of respondents routinely perform preoperative bronchoscopy. Approximately 94% of respondents prefer an open approach, which is extrapleural in 71% of respondents. There were no differences in use of thoracoscopy between Europeans (10%) and non-Europeans (11%, p=nonsignificant). Approximately 60% of respondents measure the gap intraoperatively. A transanastomotic tube (90%) and chest drain (69%) are left in situ. Elective paralysis is adopted by 56% of respondents mainly for anastomosis tension (65%). About 72% of respondents routinely request a contrast study on postoperative day 7 (2-14). Approximately 54% of respondents use parenteral nutrition, 40% of respondents start transanastomotic feeds on postoperative day 1, and 89% of respondents start oral feeds after postoperative day 5. Pure EA: 46% of respondents work in centers that repair two or more than two pure EA a year. About 60% of respondents opt for delayed primary anastomosis at 3 months (1-12 months) with gastrostomy formation without esophagostomy. Anastomosis is achieved with open approach by 85% of respondents. About 47% of respondents attempt elongation of esophageal ends via Foker technique (43%) or with serial dilations with bougies (41%). Approximately 67% of respondents always attempt an anastomosis. Gastric interposition is the commonest esophageal substitution. ConclusionMany aspects of EA management are lacking consensus. Minimally invasive repair is still sporadic. We recommend establishment of an EA registry
Neoadjuvant bevacizumab and anthracycline-taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44)†
Background We evaluated the pathological complete response (pCR) rate after neoadjuvant epirubicin, (E) cyclophosphamide (C) and docetaxel containing chemotherapy with and without the addition of bevacizumab in patients with triple-negative breast cancer (TNBC). Patients and methods Patients with untreated cT1c-4d TNBC represented a stratified subset of the 1948 participants of the HER2-negative part of the GeparQuinto trial. Patients were randomized to receive four cycles EC (90/600 mg/m2; q3w) followed by four cycles docetaxel (100 mg/m2; q3w) each with or without bevacizumab (15 mg/kg; q3w) added to chemotherapy. Results TNBC patients were randomized to chemotherapy without (n = 340) or with bevacizumab (n = 323). pCR (ypT0 ypN0, primary end point) rates were 27.9% without and 39.3% with bevacizumab (P = 0.003). According to other pCR definitions, the addition of bevacizumab increased the pCR rate from 30.9% to 41.8% (ypT0 ypN0/+; P = 0.004), 36.2% to 46.4% (ypT0/is ypN0/+; P = 0.009) and 32.9% to 43.3% (ypT0/is ypN0; P = 0.007). Bevacizumab treatment [OR 1.73, 95% confidence interval (CI) 1.23-2.42; P = 0.002], lower tumor stage (OR 2.38, 95% CI 1.24-4.54; P = 0.009) and grade 3 tumors (OR 1.68, 95% CI 1.14-2.48; P = 0.009) were confirmed as independent predictors of higher pCR in multivariate logistic regression analysis. Conclusions The addition of bevacizumab to chemotherapy in TNBC significantly increases pCR rate
Recommended from our members
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers
Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
Large enhancement of deuteron polarization with frequency modulated microwaves
We report a large enhancement of 1.7 in deuteron polarization up to values of
0.6 due to frequency modulation of the polarizing microwaves in a two liters
polarized target using the method of dynamic nuclear polarization. This target
was used during a deep inelastic polarized muon-deuteron scattering experiment
at CERN. Measurements of the electron paramagnetic resonance absorption spectra
show that frequency modulation gives rise to additional microwave absorption in
the spectral wings. Although these results are not understood theoretically,
they may provide a useful testing ground for the deeper understanding of
dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar
files in poltar.uu, which also brings cernart.sty and crna12.sty files neede
- …
