71 research outputs found

    C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons.

    Get PDF
    Intronic hexanucleotide expansions in C9ORF72 are common in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non-ATG-initiated translation are responsible for the pathophysiology. We determined the interactome of C9ORF72 in motor neurons and found that C9ORF72 was present in a complex with cofilin and other actin binding proteins. Phosphorylation of cofilin was enhanced in C9ORF72-depleted motor neurons, in patient-derived lymphoblastoid cells, induced pluripotent stem cell-derived motor neurons and post-mortem brain samples from ALS patients. C9ORF72 modulates the activity of the small GTPases Arf6 and Rac1, resulting in enhanced activity of LIM-kinases 1 and 2 (LIMK1/2). This results in reduced axonal actin dynamics in C9ORF72-depleted motor neurons. Dominant negative Arf6 rescues this defect, suggesting that C9ORF72 acts as a modulator of small GTPases in a pathway that regulates axonal actin dynamics

    Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis

    Get PDF
    Abstract Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2–5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis

    Neurodegenerative Diseases and Autophagy

    Get PDF
    Most neurodegenerative diseases are characterized by the accumulation of aggregated proteins within neurons. These aggregate-prone proteins cause toxicity, a phenomenon that is further exacerbated when there is defective protein clearance. Autophagy is an intracellular clearance pathway that can clear these protein aggregates and has been shown to be beneficial in the treatment of neurodegenerative diseases in a variety of model systems. Here, we introduce the key components of the autophagy machinery and signaling pathways that control this process and discuss the evidence that autophagic flux may be impaired and therefore a contributing factor in neurodegenerative disease pathogenesis. Finally, we review the use of autophagy upregulation as a therapeutic strategy to treat neurodegenerative disorders

    Network Analyses Reveal Novel Aspects of ALS Pathogenesis

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially relevant targets for therapeutic intervention

    C9orf72-mediated ALS and FTD: multiple pathways to disease

    Get PDF
    The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression

    The Spectrum of C9orf72-mediated Neurodegeneration and Amyotrophic Lateral Sclerosis

    Get PDF
    The discovery that a hexanucleotide repeat expansion in C9orf72 is the most numerous genetic variant of both amyotrophic lateral sclerosis and frontotemporal dementia has opened a rapidly growing field, which may provide long hoped for advances in the understanding and treatment of these devastating diseases. In this review we describe the various phenotypes, clinical and pathological, associated with expansion of C9orf72, which go beyond amyotrophic lateral sclerosis and frontotemporal dementia to include neurodegeneration more broadly. Next we take a step back and summarize the current understanding of the C9orf72 expansion and its protein products at a molecular level. Three mechanisms are prominent: toxicity mediated directly by RNA transcribed from the repeat; toxicity mediated by dipeptide repeat proteins translated from the repeat sequence; and haploinsufficiency resulting from reduced transcription of the C9orf72 exonic sequence. A series of exciting advances have recently described how dipeptide repeat proteins might interfere with the normal role of the nucleolus in maturation of RNA binding proteins and in production of ribosomes. Importantly, these mechanisms are unlikely to be mutually exclusive. We draw attention to the fact that clinical and pathological similarities to other genetic variants without a repeat expansion must not be overlooked in ascribing a pathogenic mechanism to C9orf72-disease. Finally, with a view to impact on patient care, we discuss current practice with respect to genetic screening in patients with and without a family history of disease, and the most promising developments towards therapy that have been reported to date

    Deciphering genetic interactions between ALS genes using C. elegans

    No full text
    • …
    corecore