82 research outputs found

    Cyanobacteria—From the Oceans to the Potential Biotechnological and Biomedical Applications

    Get PDF
    Cyanobacteria are photosynthetic prokaryotic organisms which represent a significantsource of novel, bioactive, secondary metabolites, and they are also considered an abundant source ofbioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin,cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results insuccessful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied tomedical research have demonstrated an exciting future with great potential to be developed into newmedicines. Most of these compounds have exhibited strong pharmacological activities, includingneurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so thesemetabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existingissues associated with chemical isolation, including small yields, and may be necessary to betterinvestigate their biological activities. Herein, we highlight the total synthesized and stereochemicaldeterminations of the cyanobacterial bioactive compounds. Furthermore, this review primarilyfocuses on the biotechnological applications of cyanobacteria, including applications as cosmetics,food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compoundsin potential medicinal applications for various human diseases are discussed.Stockholm UniversityPeer Reviewe

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Accelerating genetic optimization of nonlinear model predictive control by learning optimal search space size

    Full text link
    Nonlinear model predictive control (NMPC) solves a multivariate optimization problem to estimate the system's optimal control inputs in each control cycle. Such optimization is made more difficult by several factors, such as nonlinearities inherited in the system, highly coupled inputs, and various constraints related to the system's physical limitations. These factors make the optimization to be non-convex and hard to solve traditionally. Genetic algorithm (GA) is typically used extensively to tackle such optimization in several application domains because it does not involve differential calculation or gradient evaluation in its solution estimation. However, the size of the search space in which the GA searches for the optimal control inputs is crucial for the applicability of the GA with systems that require fast response. This paper proposes an approach to accelerate the genetic optimization of NMPC by learning optimal search space size. The proposed approach trains a multivariate regression model to adaptively predict the best smallest search space in every control cycle. The estimated best smallest size of search space is fed to the GA to allow for searching the optimal control inputs within this search space. The proposed approach not only reduces the GA's computational time but also improves the chance of obtaining the optimal control inputs in each cycle. The proposed approach was evaluated on two nonlinear systems and compared with two other genetic-based NMPC approaches implemented on the GPU of a Nvidia Jetson TX2 embedded platform in a processor-in-the-loop (PIL) fashion. The results show that the proposed approach provides a 39-53\% reduction in computational time. Additionally, it increases the convergence percentage to the optimal control inputs within the cycle's time by 48-56\%, resulting in a significant performance enhancement. The source code is available on GitHub

    Comparative Analysis for Boosting Classifiers in the Context of Higher Education

    No full text
    Machine learning techniques are applied on higher education data for analyzing the interac-tion between the students and electronic learning systems. This type of analysis serves in predicting students’ scores, in alerting students-at-risk, and in managing the degree of stu-dent engagement to educational system. The approaches in this work implements the divide and conquer algorithm on feature set of an educational data set to enhance the analysis and prediction accuracy. It divides the feature set into a number of logical subgroups based on the problem domain. Each subgroup is analyzed separately and the final result is the combi-nation of the results of the analysis of these subgroups. The classifier that shows the best prediction accuracy is dependent on the logical non-statistical nature of the features in each group. Both traditional and boosting classifiers are utilized on each dataset, from which a comparison is conducted to show the best classifiers along with the best dataset. This ap-proach provides the possibility to apply a brute force algorithm in the selection of the best feature subgroups with a low computational complexity. The experimental work shows a high prediction accuracy of the students-at-risk relative to the current research, and provides a list of new important features in the field of electronic learning systems

    Learning a non‐linear combination of Mahalanobis distances using statistical inference for similarity measure

    No full text
    In this study, the authors learn a similarity measure that discriminates between inter‐class and intra‐class samples based on a statistical inference perspective. A non‐linear combination of Mahalanobis is proposed to reflect the properties of a likelihood ratio test. Since an object's appearance is influenced by the identity of the object and variations in the capturing process, the authors represent the feature vector, which is the difference between two samples in the differences space, as a sample that is drawn from a mixture of many distributions. This mixture consists of the identities distribution and other distributions of the variations in the capturing process, in case of dissimilar samples. However, in the case of similar samples, the mixture consists of the variations in the capturing process distributions only. Using this representation, the proposed similarity measure accurately discriminates between inter‐class and intra‐class samples. To highlight the good performance of the proposed similarity measure, it is tested on different computer vision applications: face verification and person re‐identification. To illustrate how the proposed learning method can easily be used on large scale datasets, experiments are conducted on different challenging datasets: labelled faces in the wild (LFW), public figures face database, ETHZ and VIPeR. Moreover, in these experiments, the authors evaluate different stages, for example, features detector, descriptor type and descriptor dimension, which constitute the face verification pipeline. The experimental results confirm that the learning method outperforms the state‐of‐the‐art

    The Computational Preventive Potential of the Rare Flavonoid, Patuletin, Isolated from Tagetes patula, against SARS-CoV-2

    No full text
    The rare flavonoid, patuletin, was isolated from the flowers of Tagetes patula growing in Egypt. The rarity of the isolated compound inspired us to scrutinize its preventive effect against COVID-19 utilizing a multi-step computational approach. Firstly, a structural similarity study was carried out against nine ligands of nine SARS-CoV-2 proteins. The results showed a large structural similarity between patuletin and F86, the ligand of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Then, a 3D-Flexible alignment study of patuletin and F86 verified the proposed similarity. To determine the binding opportunity, patuletin was docked against the RdRp showing a correct binding inside its active pocket with an energy of &minus;20 kcal/mol that was comparable to that of F86 (&minus;23 kcal/mol). Following, several MD simulations as well as MM-PBSA studies authenticated the accurate binding of patuletin in the RdRp via the correct dynamic and energetic behaviors over 100 ns. Additionally, in silico ADMET studies showed the general safety and drug-likeness of patuletin

    A new updated version of the Weibull model with an application to re-injury rate data

    No full text
    Probability distributions play useful and meaningful roles in sports sciences and biomedical sectors. Probability distributions can be used to model and predict the chances of injuries and recovery time after the injuries. We propose and implement a new method to introduce new probability distributions. The new method is named a new updated-V family, as it can be used to increase/update the flexibility of the modified and traditional probability models. Based on the new updated-V method, a new extension of the Weibull model, namely, a new updated Weibull model is proposed. Statistical properties of the new updated-Weibull model, such as (i) quantile function, (ii) heavy-tailed properties (iii) rth moment, (iv) probability weighted moments, and (i) moment generating functions are presented. For the new updated-V distributions, the estimators are derived. The assessment of the new updated-V distribution estimators is done via a simulation study. A practical application related to the re-injury rate data is considered for the establishment of the applicability of the new updated Weibull distribution
    corecore