8 research outputs found

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Ligand Activation of Peroxisome Proliferator–Activated Receptor β/δ (PPARβ/δ) Attenuates Carbon Tetrachloride Hepatotoxicity by Downregulating Proinflammatory Gene Expression

    No full text
    Peroxisome proliferator–activated receptor (PPAR) β/δ–null mice exhibit exacerbated hepatotoxicity in response to administration of carbon tetrachloride (CCl4). To determine whether ligand activation of the receptor protects against chemical toxicity in the liver, wild-type and PPARβ/δ-null mice were administered CCl4 with or without coadministration of the highly specific PPARβ/δ ligand GW0742. Biomarkers of liver toxicity, including serum alanine aminotransferase (ALT) and hepatic tumor necrosis factor (TNF) α mRNA, were significantly higher in CCl4-treated PPARβ/δ-null mice compared to wild-type mice. Hepatic expression of TNF-like weak inducer of apoptosis receptor (TWEAKr) and S100 calcium–binding protein A6 (S100A6/calcyclin), genes involved in nuclear factor kappa B signaling, was higher in the CCl4-treated PPARβ/δ-null mice compared to wild-type mice. GW0742 treatment resulted in reduced serum ALT concentration and lower expression of CCl4-induced TNF-α, S100A6, monocyte chemoattractant protein-1 (MCP1), and TWEAKr in wild-type mice, and these effects were not observed in PPARβ/δ-null mice. Expression of TNF-α was higher in PPARβ/δ-null primary hepatocytes in response to interleukin-1β treatment compared to wild-type hepatocytes, but GW0742 did not significantly modulate TNF-α expression in hepatocytes from either genotype. While PPARβ/δ-null hepatic stellate exhibited higher rates of proliferation compared to wild-type cells, GW0742 did not affect α-smooth muscle actin expression in these cells. Combined, these findings demonstrate that ligand activation of PPARβ/δ protects against chemically induced hepatotoxicity by downregulating expression of proinflammatory genes. Hepatocytes and hepatic stellate cells do not appear to directly mediate the inhibitory effects of ligand activation of PPARβ/δ in liver, suggesting the involvement of paracrine and autocrine events mediated by hepatic cells

    Brainhack: Developing a culture of open, inclusive, community-driven neuroscience

    No full text
    Brainhack is an innovative meeting format that promotes scientific collaboration and education in an open, inclusive environment. This NeuroView describes the myriad benefits for participants and the research community and how Brainhacks complement conventional formats to augment scientific progress
    corecore