2,073 research outputs found

    Regional increase in the expression of the BCAT proteins in Alzheimer's disease brain: Implications in glutamate toxicity

    Get PDF
    BACKGROUNDThe human branched chain aminotransferases (hBCATm, mitochondrial and hBCATc, cytosolic) are major contributors to brain glutamate production. This excitatory neurotransmitter is thought to contribute to neurotoxicity in neurodegenerative conditions such as Alzheimer's disease (AD) but the expression of hBCAT in this disease has not previously been investigated.OBJECTIVEThe objective of investigating hBCAT expression is to gain insight into potential metabolic pathways that may be dysregulated in AD brain, which would contribute to glutamate toxicity.METHODSWestern blot analysis and immunohistochemistry were used to determine the expression and localization of hBCAT in postmortem frontal and temporal cortex from AD and matched control brains.RESULTSWestern blot analysis demonstrated a significant regional increase in hBCATc expression in the hippocampus (↑ 36%; p-values of 0.012), with an increase of ↑ 160% reported for hBCATm in the frontal and temporal cortex (p-values = 4.22 × 10-4 and 2.79 × 10-5, respectively) in AD relative to matched controls, with evidence of post-translational modifications to hBCATm, more prominent in AD samples. Using immunohistochemistry, a significant increase in immunopositive labelling of hBCATc was observed in the CA1 and CA4 region of the hippocampus (p-values = 0.011 and 0.026, respectively) correlating with western blot analysis. Moreover, the level of hBCATm in the frontal and temporal cortex correlated significantly with disease severity, as indicated by Braak staging (p-values = 5.63 × 10-6 and 9.29 × 10-5, respectively).CONCLUSIONThe expression of the hBCAT proteins is significantly elevated in AD brain. This may modulate glutamate production and toxicity, and thereby play a role in the pathogenesis of the disease

    The branched-chain aminotransferase proteins: Novel redox chaperones for protein disulfide isomerase-implications in Alzheimer's disease

    Get PDF
    Aims: The human branched-chain aminotransferase proteins (hBCATm and hBCATc) are regulated through oxidation and S-nitrosation. However, it remains unknown whether they share common redox characteristics to enzymes such as protein disulfide isomerase (PDI) in terms of regulating cellular repair and protein misfolding. Results: Here, similar to PDI, the hBCAT proteins showed dithiol-disulfide isomerase activity that was mediated through an S-glutathionylated mechanism. Site-directed mutagenesis of the active thiols of the CXXC motif demonstrates that they are fundamental to optimal protein folding. Far Western analysis indicated that both hBCAT proteins can associate with PDI. Co-immunoprecipitation studies demonstrated that hBCATm directly binds to PDI in IMR-32 cells and the human brain. Electron and confocal microscopy validated the expression of PDI in mitochondria (using Mia40 as a mitochondrial control), where both PDI and Mia40 were found to be co-localized with hBCATm. Under conditions of oxidative stress, this interaction is decreased, suggesting that the proposed chaperone role for hBCATm may be perturbed. Moreover, immunohistochemistry studies show that PDI and hBCAT are expressed in the same neuronal and endothelial cells of the vasculature of the human brain, supporting a physiological role for this binding. Innovation: This study identifies a novel redox role for hBCAT and confirms that hBCATm differentially binds to PDI under cellular stress. Conclusion: These studies indicate that hBCAT may play a role in the stress response of the cell as a novel redox chaperone, which, if compromised, may result in protein misfolding, creating aggregates as a key feature in neurodegenerative conditions such as Alzheimer's disease. © 2014 Mary Ann Liebert, Inc

    Therapeutic benefit for late, but not early, passage mesenchymal stem cells on pain behaviour in an animal model of osteoarthritis

    Get PDF
    Background: Mesenchymal stem cells (MSCs) have a therapeutic potential for the treatment of osteoarthritic (OA) joint pathology and pain. The aims of this study were to determine the influence of a passage number on the effects of MSCs on pain behaviour and cartilage and bone features in a rodent model of OA. Methods: Rats underwent either medial meniscal transection (MNX) or sham surgery under anaesthesia. Rats received intra-articular injection of either 1.5×106 late passage MSCs labelled with 10 μg/ml SiMAG, 1.5×106 late passage mesenchymal stem cells, the steroid Kenalog (200 μg/20 μL), 1.5×106 early passage MSCs, or serum-free media (SFM). Sham-operated rats received intra-articular injection of SFM. Pain behaviour was quantified until day 42 postmodel induction. Magnetic resonance imaging (MRI) was used to localise the labelled cells within the knee joint. Results: Late passage MSCs and Kenalog attenuated established pain behaviour in MNX rats, but did not alter MNX-induced joint pathology at the end of the study period. Early passage MSCs exacerbated MNX-induced pain behaviour for up to one week postinjection and did not alter joint pathology. Conclusion: Our data demonstrate for the first time the role of a passage number in influencing the therapeutic effects of MSCs in a model of OA pain

    NeuroProv: Provenance data visualisation for neuroimaging analyses

    Get PDF
    © 2019 Elsevier Ltd Visualisation underpins the understanding of scientific data both through exploration and explanation of analysed data. Provenance strengthens the understanding of data by showing the process of how a result has been achieved. With the significant increase in data volumes and algorithm complexity, clinical researchers are struggling with information tracking, analysis reproducibility and the verification of scientific output. In addition, data coming from various heterogeneous sources with varying levels of trust in a collaborative environment adds to the uncertainty of the scientific outputs. This provides the motivation for provenance data capture and visualisation support for analyses. In this paper a system, NeuroProv is presented, to visualise provenance data in order to aid in the process of verification of scientific outputs, comparison of analyses, progression and evolution of results for neuroimaging analyses. The experimental results show the effectiveness of visualising provenance data for neuroimaging analyses

    Tyrosine Sulfation of the Amino Terminus of PSGL-1 Is Critical for Enterovirus 71 Infection

    Get PDF
    Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease, a common febrile disease in children; however, EV71 has been also associated with various neurological diseases including fatal cases in large EV71 outbreaks particularly in the Asia Pacific region. Recently we identified human P-selectin glycoprotein ligand-1 (PSGL-1) as a cellular receptor for entry and replication of EV71 in leukocytes. PSGL-1 is a sialomucin expressed on the surface of leukocytes, serves as a high affinity counterreceptor for selectins, and mediates leukocyte rolling on the endothelium. The PSGL-1–P-selectin interaction requires sulfation of at least one of three clustered tyrosines and an adjacent O-glycan expressing sialyl Lewis x in an N-terminal region of PSGL-1. To elucidate the molecular basis of the PSGL-1–EV71 interaction, we generated a series of PSGL-1 mutants and identified the post-translational modifications that are critical for binding of PSGL-1 to EV71. We expressed the PSGL-1 mutants in 293T cells and the transfected cells were assayed for their abilities to bind to EV71 by flow cytometry. We found that O-glycosylation on T57, which is critical for PSGL-1–selectin interaction, is not necessary for PSGL-1 binding to EV71. On the other hand, site-directed mutagenesis at one or more potential tyrosine sulfation sites in the N-terminal region of PSGL-1 significantly impaired PSGL-1 binding to EV71. Furthermore, an inhibitor of sulfation, sodium chlorate, blocked the PSGL-1–EV71 interaction and inhibited PSGL-1-mediated viral replication of EV71 in Jurkat T cells in a dose-dependent manner. Thus, the results presented in this study reveal that tyrosine sulfation, but not O-glycosylation, in the N-terminal region of PSGL-1 may facilitate virus entry and replication of EV71 in leukocytes

    BCAT-induced autophagy regulates Aβ load through an interdependence of redox state and PKC phosphorylation-implications in Alzheimer's disease

    Get PDF
    Leucine, nutrient signal and substrate for the branched chain aminotransferase (BCAT) activates the mechanistic target of rapamycin (mTORC1) and regulates autophagic flux, mechanisms implicated in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease (AD). BCAT is upregulated in AD, where a moonlighting role, imparted through its redox-active CXXC motif, has been suggested. Here we demonstrate that the redox state of BCAT signals differential phosphorylation by protein kinase C (PKC) regulating the trafficking of cellular pools of BCAT. We show inter-dependence of BCAT expression and proteins associated with the P13K/Akt/mTORC1 and autophagy signalling pathways. In response to insulin or an increase in ROS, BCATc is trafficked to the membrane and docks via palmitoylation, which is associated with BCATc-induced autophagy through PKC phosphorylation. In response to increased levels of BCATc, as observed in AD, amyloid β (Aβ) levels accumulate due to a shift in autophagic flux. This effect was diminished when incubated with leucine, indicating that dietary levels of amino acids show promise in regulating Aβ load. Together these findings show that increased BCATc expression, reported in human AD brain, will affect autophagy and Aβ load through the interdependence of its redox-regulated phosphorylation offering a novel target to address AD pathology

    Estimating uncertainty of alcohol-attributable fractions for infectious and chronic diseases

    Get PDF
    Background: Alcohol is a major risk factor for burden of disease and injuries globally. This paper presents a systematic method to compute the 95% confidence intervals of alcohol-attributable fractions (AAFs) with exposure and risk relations stemming from different sources.Methods: The computation was based on previous work done on modelling drinking prevalence using the gamma distribution and the inherent properties of this distribution. The Monte Carlo approach was applied to derive the variance for each AAF by generating random sets of all the parameters. A large number of random samples were thus created for each AAF to estimate variances. The derivation of the distributions of the different parameters is presented as well as sensitivity analyses which give an estimation of the number of samples required to determine the variance with predetermined precision, and to determine which parameter had the most impact on the variance of the AAFs.Results: The analysis of the five Asian regions showed that 150 000 samples gave a sufficiently accurate estimation of the 95% confidence intervals for each disease. The relative risk functions accounted for most of the variance in the majority of cases.Conclusions: Within reasonable computation time, the method yielded very accurate values for variances of AAFs

    Phonons in Slow Motion: Dispersion Relations in Ultra-Thin Si Membranes

    Full text link
    We report the changes in dispersion relations of hypersonic acoustic phonons in free-standing silicon membranes as thin as \sim 8 nm. We observe a reduction of the phase and group velocities of the fundamental flexural mode by more than one order of magnitude compared to bulk values. The modification of the dispersion relation in nanostructures has important consequences for noise control in nano and micro-electromechanical systems (MEMS/NEMS) as well as opto-mechanical devices.Comment: 5 page

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore