342 research outputs found

    Human pluripotent stem cell expansion in vertical-wheel bioreactors

    Get PDF
    Human induced pluripotent stem cells (hiPSC) have been regarded as an enormous breakthrough for medicine, since they can be derived from patients and be used to generate virtually all types of cells in the human body. One of the great bottlenecks in the usage of these cells for regenerative medicine or drug discovery applications is their expansion to relevant quantities. The Vertical-Wheel Bioreactors (PBS Biotech) present a novel scalable bioreactor configuration, whose agitation mechanism allows for homogeneous mixing conditions inside the single-use vessel, while conveying less shear stress to the cells when compared to traditional alternatives. These characteristics are advantageous for hiPSC expansion and thus, in this work, hiPSC were expanded in the Vertical-Wheel Bioreactor using different strategies, namely culturing the cells 1) on microcarriers and 2) as floating aggregates. In the first approach, cells were cultured under xeno-free conditions, using the Essential 8 medium together with microcarriers and coatings devoid of any animal-derived products [1]. The culture conditions were optimized in terms of initial cell/microcarrier ratio, inoculation method and agitation rate, in the PBS 0.1 vessel (working volume: 80 mL). The cells were successfully expanded, maintaining a normal karyotype, up to a 6.7-fold increase in cell number, after 6 days. These optimized culture conditions were successfully repeated in a larger vessel, the PBS 0.5 (300 mL working volume) demonstrating the scalability of the Vertical-Wheel system. In the second approach, hiPSC were expanded as floating aggregates, a methodology which does not require a separation step at the end of culture, to remove microcarriers, facilitating the downstream processing and Good Manufacturing Practice-compliance of the process. Cells were cultured in the PBS 0.1 (working volume: 60 mL), using mTeSR1, a serum-free medium and were monitored throughout culture regarding growth kinetics, aggregate size distribution and expression of pluripotency markers. The Vertical-Wheel Bioreactors were shown to efficiently keep the cell aggregates in suspension, under lower linear agitation speeds than an equivalent volume spinner flask (7 cm/s vs. 13 cm/s). Following 7 days of culture, cells were expanded up to a 5.2 ± 0.6-fold increase in cell number. The hiPSC aggregates increased in size over time, from an average diameter of 135 ± 61 ”m to 397 ± 119 ”m after 7 days. Pluripotency was maintained throughout time, as assessed by sustained high (\u3e 80%) expression of pluripotency markers OCT4, SOX2 and TRA-1-60, and low (\u3c 10%) expression of early differentiation marker SSEA-1. The results were validated using a second hiPSC line. This study revealed that the Vertical-Wheel Bioreactor allows hiPSC growth either on microcarriers and as aggregates and suggested it to have advantages versus other configurations. These results make the Vertical-Wheel Bioreactor a promising platform for hiPSC expansion and, prospectively, differentiation approaches, contributing for the generation of bona fide cells for various biomedical applications, namely drug screening, disease modelling, and, ultimately, for Regenerative Medicine. [1] Rodrigues CAV, Silva TP, Nogueira DES, Fernandes TG, Hashimura Y, Wesselschmidt R, Diogo MM, Lee B, Cabral JMS (2018), “Scalable Culture Of Human Induced Pluripotent Cells On Microcarriers Under Xeno‐Free Conditions Using Single‐Use Vertical‐Wheelℱ Bioreactors”, Journal of Chemical Technology and Biotechnology, DOI: 10.1002/jctb.573

    Observation of In-Plane Magnetic Field Induced Phase Transitions in FeSe

    Get PDF
    We investigate thermodynamic properties of FeSe under in-plane magnetic fields using torque magnetometry, specific heat, and magnetocaloric measurements. Below the upper critical field Hc2, we observed the field induced anomalies at H1 ∌ 15 T and H2 ∌ 22 T near H ∄ ab and below a characteristic temperature T* ∌ 2 K. The transition magnetic fields H1 and H2 exhibit negligible dependence on both temperature and field orientation. This contrasts to the strong temperature and angle dependence of Hc2, suggesting that these anomalies are attributed to the field induced phase transitions, originating from the inherent spin-density-wave instability of quasipaticles near the superconducting gap minima or possible Flude-Ferrell-Larkin-Ovchinnikov state in the highly spin-polarized Fermi surfaces. Our observations imply that FeSe, an atypical multiband superconductor with extremely small Fermi energies, represents a unique model system for stabilizing unusual superconducting orders beyond the Pauli limit

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University MĂŒnster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369
    • 

    corecore