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Abstract

The PUE's in tbe NSLS storage rings are of the 4 button type.
Near the center of the PUE the beam position can be well approxi-
mated with a linear function of the sum and the differecce signals
induced on these electrodes by the bunched beam. The nonlinear
response of the PUE's further away from the center was measured.
An algorithm was developed to compensate for, this effect.

1. Introduction

With more and more sophisticated experiments and the installa-
tion of insertion devices, the need for stability of the electron beam
orbit in the NSLS storage rings has increased over the past few years.
This requires more accurate measurement and belter control of the
orbit. As pan of the effort to be able to control the beam orbit to «50u;
accuracy, new method of orbit correction was worked out [1] and the
orbit monitor electronics is being upgraded [2].

It has become increasingly important to develop an algorithm
that can be used to correct for the nonlioearities in the beam
position measuring system. With the aid of a bench measurement
we have developed such an algorithm. The present paper describes
chis effort.

2. Determination of Beam Displacement

2.1 The closed orbits in the NSLS storage rings are measured
using sets of four circular pickup electodes (PUE's) mounted on the
rectangular vacuum chamber as shown of Fig. 1.
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Fig. 1 Tbe NSLS vacuum chamber witb pickup electrodes (PUE's).

The electron bunches passing by the PUE's induce
Va, Vb , V c , Vd voltages on the electrodes, which are sampled
sequentially by switches. The signals are detected by a fixed

.frequency receiver tuned to a harmonic of the RF frequency.**
The xb horizontal and yb vertical orbit displacements of the

beam are then calculated from the sums and differences of the
signals as:

' xb - Kxx, . (la)

yb» V« ( l b )

rv, and Ky in the above equations have the dimension of lengths, and
in general they depend on ibe xb , yb beam position, thus making the

•Work performed under the auspices of the U.S. Department of Energy
* Permanent address: Pohajif Light Source, Fohang Institute of Science and
Technolof y, Korea.
••Al the present time there are two kinds of actual implementation: some
of the PUE's are usinj the old electronic circuits [3], some the new one.

(la.b) relationships nonlinear. In practice. K, , Ky can be considered
constants only near the center of the vacuum chamber.

The x , , y. "electrical coordinates" in eqs.(l) are defined as

y.

Further information may be obtained by the remaining combination
of the four induced signals:

A -
V c )

v. + vk

2.2 One could calculate the x( . y. "electrical coordinates" as
a function of the xb , yb beam position (see Appendix) by solving
the corresponding Dirichlet problem either analytically [4,5] or
using the POISSON (or any similar) program. The resulting equa-
tions, do not lend themselves easily to inversion. However it is
possible to solve for the xb , yb beam positions with an iterative
method [5].

A slightly different approach is to use bench measurements to
approximate the K, y (xb , yk) functions and then solve the implicit
eqs.(l) with a recursive method [6].

2.3 Another, more direct way of solving the problem is to use
the bench measurements to approximate K, and Ky as a function of
the measured "electrical coordinates", thus transforming eqs.(I) from
implicit to explicit relations, thereby avoiding iterative process.

Besides being able to avoid recursive methods, an additional
benefit of using calibration measurements is that alt actual devia-
tion from the ideal case (effects of the finite transverse size of the
beam, sensor geometry errors, gain error in the electronics or any
distortion introduced by the electronics [5]) are taken into account.

3. Bench Measurement

3.1 An aluminium antenna of « 3 mm diameter, simulating
the beam, was inserted longitudinally into a section of the vacuum
chamber with the four PUE electrodes in place. A movable slide
mount allowed positioning the antenna in the x and y transversal
directions with an accuracy of - 10 |i. For PUE signal detection the
newly developed electronics [2] was used, the outputs of which
were the V , , V and VA voltages while the Vt sum voltage was
kept constant. The accuracy of the Vx , Vy , V4 was -.005 Volts
(corresponding to -15 M movement in the antenna position). The
antenna was connected to an RF source at 211.54 MHz (the same
frequency to which the POE signal receiver was tuned).

The vacuum chamber was scanned along xb * constant lines
and measurements were made with the antenna positioned at xb « 0.
±1. ±2, ±J. ±10. ±15, ±20. ±25. ±29 mm and yb - 0. ±1. ±2. ±5. ±S.
±11 mm grid-points. The antenna used in the measurements had a
short shield, -16 mm in diameter, attached to its base which
precluded measurements beyond these positions.

3.2 After correcting for small offset between the mechanical
and electrical zero-points, we found thai x, and yc are symmetrical
around xs » 0 and yb » 0.

Therefore, it is justified to simplify calculations in the foilow-
ings and look ai only a quadrant of the vacuum chamber using the
averaged x, and y. values.

3.3 Fig. 2a shows y, as a function of xe. The horizontal lines
correspond to measurements at yb » constant, while the vertical
lines correspond to xb » consiant. Onej
orthogonal xb , yb grid is distorted.
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Fig. 2a y. as function of x% showing itronfly nonlinear behaviour.
Horizontal and vertical lines correspond to y, » constant and x» •
constant, respectively ̂
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Fig. 2b Reconstructed x j . y j (rid. wbere K, and Kj, were calculated
usin| the (3) Taylor series expansion up to 7-th order terms.

1. Even at yb » 0, xb does not seems to be linearly dependent
on x, for xk i 5 mm. The Ax, distances between the equidistant Axb

lines are dramatically decreasing with increasing xb,
2. The nonlinearity starts at smaller xfe's as yb is increased.
3. For y,. the nonlinearity is less pronounced even up to

y b " 11 nun for small x^'s (S3 mm). This can also be seen from
Table 1 (see explanation later).

Usinf the results of an analytic solution of the Dirichlet
problem as f uidance, the measured x. , y, and A points were fitted
in the form {iven by eqs.(6) in the Appendix. Using only the flrst
seven terms in the sums, the agreement is good; the RMS difference
beiween measured and fitted values are £.002, £.020 and £.013 for
x , , y, and A, respectively.

Figs. 3 , 4 and 5 show the 3D plots of the x , (x k , yk), y,(x,,, yk)
and A ^ , yb) functions as fitted. The corresponding 2D projections

•are also shown on the figures. This presentation clearly visualizes
the properties described in connection with Fig.2a.

3.4 Let us now turn to the inverse problem which arises
when one has to calculate the unknown beam position from the
measured electrical coordinates. As one can see from Figs. 3, at
large displacements (xb 2 20 mm) a small error in x, can result in a
large uncertainty in xb, and unfortunately one can not resolve the -
uncertainly any belter using information provided by A.

As we have already stressed, it is not a trivial task to invert the
(6a.b) relations given in the Appendix. Therefore we are looking
for the fitting function in a Taylor expanded form. Simple symme-
try considerations, similar to relations (2) and the conditions that xk

and yk should be zero along the y, and x t axis, respectively
(i.e. x^x , '" 0, y,) • 0 and yJx e ,yt « 0) » 0) suggest that the
Taylor expansion should be of the form:

and

Z w?"

• y.)

Z Z bBJ1

y. I £

(2)

(The x j , y j notation is used to distinguish between the actual and
the calculated beam positions). The amjl and bmjt coefficients were
obtained from fitting the bench measured data with the (3) Taylor
series.

To show toe goodness of the approximation, the beam position
was calculated for each measured gridpoint from eqs.(l) using

(i) constant Kx, K^ and
(ii) their Taylor approximation (up to 7-th order terms), using

the fitted values of the a and b coefficients.
The constant K, and Ky were calculated to yield x j » y j » I

mm when the antenna position was xb » yb * I mm. The RMS
differences between measured and calculated beam positions for
both cases are given in Table-1. The results are shown separately
for two regions within (he vacuum chamber: inside and outside an
±5 by ±3 mm rectangle around the middle of (he vacuum chamber.
Even in the center region, the error in the beam position calcula-
tion, assuming linear behaviour (constant K's), is in the order or
larger than the required « SO u, accuracy.

Table-1
RMS differences between measured and calculated beam position

using constant K^, or their Taylor approximation for the
center and for the outside region of (he vacuum

chamber (up to 7-th order terms).

AyKMS f m m )

center region

Taylor

7.» 10*3

J.2 10-3

Constant

7.9 10"J

4.S 10~*

outside region

Taylor

1.8 10''

2.4 10'2

Constant

S.96

7.1 10-'

The results in Table-1 show that it was possible to fit the
bench measured data in the form of the (3) Taylor series to very
good accuracy. The calculated y j were plotted as a function of %l
on Fig. 2b, where as on Fig. 2a, the horizontal and vertical lines
correspond to yk - constant and xk » constant, respectively. One can
see, thai the original orthogonal xb , yb grid is well reconstructed.

In future orbit measurements the fitted values of the amJ1 and
bmjl coefficients will be used to calculate the xb , yk beam positions
from the measured x t . yt't.

Appendix

Following the treatment presented in [4], the charge induced
by a passing electron bunch with the electrodes short circuited to
the wall is calculated first. Then the real response is obtained by
regarding the electrodes as current generators in parallel with the
capacities of the electrodes (o (he wall and to each other.

. Assuming that the walls of the vacuum chamber are on uni-
form potential, and in case of a rclativistic and infinitely thin beam,
the scalar <J> potential satisfying the Dirichlet problem for (he
rectangle (see Fig. 1) is [4,7]:

(3)x sin [om(a + xb)] sin x>]

where p is the beam density localized at (xb , yb) and am » mn / 2a.
In eq. (4) ±yk is used if y > yk Or y S yb, respectively. The electric
field, normal to the walls at y » ±b is
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The F • x. , y. and A functions are shown vs. the (x», yt) beam position as 3D-p!ou (Figs, a), as well as their two 2D-projectioos onto the F. xk and
F. yv planes (Figs, b and c). The functions were obtained by Jilting the bench Measured points in the form of eqs. (6), representing the solution of the
Ciricbiei problem for a rectangle.
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(4)

yielding an induced voltage on aa electrode located al x and having
a radius of r:

V - 1 m - —

where Q is the total charge induced on (he electrode, i is the
'instantenous bunch current, c is the speed of light and C is the
capacity of the electrode to the other electrodes and to the wall.

One can take advantage of the fact thai the electrodes are at
symmetrical positions to simplify :.he calculations. Since:

certain terms cancel each other in the sums and differences and one
obtains:

V / A* sin to

*", IC:,

(5a)

(5b)

where the Am , Bm , Cm , Dm coefficients depend only on the ge-
ometry.
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