138 research outputs found

    Super star clusters and Supernovae in interacting LIRGs unmasked by NIR adaptive optics

    Full text link
    We report on an on-going near-IR adaptive optics survey targeting interacting luminous IR galaxies. High-spatial resolution NIR data are crucial to enable interpretation of kinematic, dynamical and star formation (SF) properties of these very dusty objects. Whole progenitor nuclei in the interactions can be missed if only optical HST imaging is used. Here we specifically present the latest results regarding core-collapse supernovae found within the highly extincted nuclear regions of these galaxies. Direct detection and study of such highly obscured CCSNe is crucial for revising the optically-derived SN rates used for providing an independent measurement of the SF history of the Universe. We also present thus-far the first NIR luminosity functions of super star cluster (SSC) candidates. The LFs can then be used to constrain the formation and evolution of SSCs via constraints based on initial mass functions and cluster disruption models.Comment: 6 pages. To appear in proceedings of 'Galaxies and their Masks' (Namibia, April 2010), published by Springer, New York, eds. D.L. Block, K.C. Freeman, I. Puerar

    FIRST-based survey of Compact Steep Spectrum sources, II. MERLIN and VLA observations of Medium-sized Symmetric Objects

    Full text link
    A new sample of candidate Compact Steep Spectrum (CSS) sources that are much weaker than the CSS source prototypes has been selected from the VLA FIRST catalogue. MERLIN `snapshot' observations of the sources at 5 GHz indicate that six of them have an FR II-like morphology, but are not edge-brightened as is normal for Medium-sized Symmetric Objects (MSOs) and FR IIs. Further observations of these six sources with the VLA at 4.9 GHz and MERLIN at 1.7 GHz, as well as subsequent full-track observations with MERLIN at 5 GHz of what appeared to be the two sources of greatest interest are presented. The results are discussed with reference to the established evolutionary model of CSS sources being young but in which not all of them evolve to become old objects with extended radio structures. A lack of stable fuelling in some of them may result in an early transition to a so-called coasting phase so that they fade away instead of growing to become large-scale objects. It is possible that one of the six sources (1542+323) could be labelled as a prematurely `dying' MSO or a `fader'.Comment: 13 pages, matches the version printed in Astronomy & Astrophysic

    The M81 Group Dwarf Irregular Galaxy DDO 165. II. Connecting Recent Star Formation with ISM Structures and Kinematics

    Full text link
    We compare the stellar populations and complex neutral gas dynamics of the M81 group dIrr galaxy DDO 165 using data from the HST and the VLA. Paper I identified two kinematically distinct HI components, multiple localized high velocity gas features, and eight HI holes and shells (the largest of which spans ~2.2x1.1 kpc). Using the spatial and temporal information from the stellar populations in DDO 165, we compare the patterns of star formation over the past 500 Myr with the HI dynamics. We extract localized star formation histories within 6 of the 8 HI holes identified in Paper I, as well as 23 other regions that sample a range of stellar densities and neutral gas properties. From population synthesis modeling, we derive the energy outputs (from stellar winds and supernovae) of the stellar populations within these regions over the last 100 Myr, and compare with refined estimates of the energies required to create the HI holes. In all cases, we find that "feedback" is energetically capable of creating the observed structures in the ISM. Numerous regions with significant energy inputs from feedback lack coherent HI structures but show prominent localized high velocity gas features; this feedback signature is a natural product of temporally and spatially distributed star formation. In DDO 165, the extended period of heightened star formation activity (lasting more than 1 Gyr) is energetically capable of creating the observed holes and high velocity gas features in the neutral ISM.Comment: The Astrophysical Journal, in press. Full-resolution version available on request from the first autho

    The isolated interacting galaxy pair NGC 5426/27 (Arp 271)

    Full text link
    We present H alpha observations of the isolated interacting galaxy pair NGC 5426/27 using the scanning Fabry-Perot interferometer PUMA. The velocity field, various kinematical parameters and rotation curve for each galaxy were derived. The FWHM map and the residual velocities map were also computed to study the role of non-circular motions of the gas. Most of these motions can be associated with the presence of spiral arms and structure such as central bars. We found a small bar-like structure in NGC 5426, a distorted velocity field for NGC 5427 and a bridge-like feature between both galaxies which seems to be associated with NGC 5426. Using the observed rotation curves, a range of possible masses was computed for each galaxy. These were compared with the orbital mass of the pair derived from the relative motion of the participants. The rotation curve of each galaxy was also used to fit different mass distribution models considering the most common theoretical dark halo models. An analysis of the interaction process is presented and a possible 3D scenario for this encounter is also suggested.Comment: 27 pages, 15 figures, to be published in Astronomy & Astrophysic

    Unravelling the mystery of the M31 bar

    Get PDF
    The inclination of M31 is too close to edge-on for a bar component to be easily recognised and is not sufficiently edge-on for a boxy/peanut bulge to protrude clearly out of the equatorial plane. Nevertheless, a sufficient number of clues allow us to argue that this galaxy is barred. We use fully self-consistent N-body simulations of barred galaxies and compare them with both photometric and kinematic observational data for M31. In particular, we rely on the near infrared photometry presented in a companion paper. We compare isodensity contours to isophotal contours and the light profile along cuts parallel to the galaxy major axis and offset towards the North, or the South, to mass profiles along similar cuts on the model. All these comparisons, as well as position velocity diagrams for the gaseous component, give us strong arguments that M31 is barred. We compare four fiducial N-body models to the data and thus set constraints on the parameters of the M31 bar, as its strength, length and orientation. Our `best' models, although not meant to be exact models of M31, reproduce in a very satisfactory way the main relevant observations. We present arguments that M31 has both a classical and a boxy/peanut bulge. Its pseudo-ring-like structure at roughly 50' is near the outer Lindblad resonance of the bar and could thus be an outer ring, as often observed in barred galaxies. The shape of the isophotes also argues that the vertically thin part of the M31 bar extends considerably further out than its boxy bulge, i.e. that the boxy bulge is only part of the bar, thus confirming predictions from orbital structure studies and from previous N-body simulations.Comment: 14 pages, 12 figures, minor corrections, accepted by MNRAS. Version with high resolution figures at http://www.oamp.fr/dynamique/pap/M31_th.pd

    Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory

    Get PDF
    We study D-branes and Ramond-Ramond fields on global orbifolds of Type II string theory with vanishing H-flux using methods of equivariant K-theory and K-homology. We illustrate how Bredon equivariant cohomology naturally realizes stringy orbifold cohomology. We emphasize its role as the correct cohomological tool which captures known features of the low-energy effective field theory, and which provides new consistency conditions for fractional D-branes and Ramond-Ramond fields on orbifolds. We use an equivariant Chern character from equivariant K-theory to Bredon cohomology to define new Ramond-Ramond couplings of D-branes which generalize previous examples. We propose a definition for groups of differential characters associated to equivariant K-theory. We derive a Dirac quantization rule for Ramond-Ramond fluxes, and study flat Ramond-Ramond potentials on orbifolds.Comment: 46 pages; v2: typos correcte

    Outline of a Theory of Scientific Aesthetics

    Get PDF
    I offer a theory of art that is based on science. I maintain that, as any other human activity, art can be studied with the tools of science. This does not mean that art is scientific, but aesthetics, the theory of art, can be formulated in accord with our scientific knowledge. I present elucidations of the concepts of aesthetic experience, art, work of art, artistic movement, and I discuss the ontological status of artworks from the point of view of scientific philosophy.Fil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentin

    Super-heavy fermion material as metallic refrigerant for adiabatic demagnetization cooling

    Get PDF
    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, as the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3^3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas is being increasingly difficult due to the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. Here, we show that a new type of refrigerant, super-heavy electron metal, YbCo2_2Zn20_{20}, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. A number of advantages includes much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1x_{1-x}Scx_xCo2_2Zn20_{20} by partial Sc substitution with xx\sim0.19. The substitution induces chemical pressure which drives the materials close to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures enabling final temperatures well below 100 mK. Such performance has up to now been restricted to insulators. Since nearly a century the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for the cryogen-free refrigeration
    corecore