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Abstract: We study D-branes and Ramond-Ramond fields on global orbifolds of Type
II string theory with vanishing H -flux using methods of equivariant K-theory and
K-homology. We illustrate how Bredon equivariant cohomology naturally realizes stringy
orbifold cohomology. We emphasize its role as the correct cohomological tool which
captures known features of the low-energy effective field theory, and which provides new
consistency conditions for fractional D-branes and Ramond-Ramond fields on orbifolds.
We use an equivariant Chern character from equivariant K-theory to Bredon cohomol-
ogy to define new Ramond-Ramond couplings of D-branes which generalize previous
examples. We propose a definition for groups of differential characters associated to
equivariant K-theory. We derive a Dirac quantization rule for Ramond-Ramond fluxes,
and study flat Ramond-Ramond potentials on orbifolds.

Introduction

The study of fluxes and D-branes has been of fundamental importance in understanding
the nonperturbative structures of string theory and M-theory. It has also established a
common ground on which a fruitful interaction between physics and mathematics takes
place. For example, the seminal papers [49,62] demonstrated that D-brane charges in
Type II superstring theory are classified by the K-theory of the spacetime manifold, and
that ordinary cohomology alone cannot account for certain physical features induced
by the dynamics of D-branes. As emphasized by refs. [2,36,55,60], and analyzed in
great detail in refs. [56,57], another description of D-branes is provided by K-homology
which sheds light on their geometrical nature and suggests that the standard picture of a
D-brane as a submanifold of spacetime equipped with a vector bundle (and connection)
should be modified.

Ramond-Ramond fields are dual objects to D-branes and have also been extensively
investigated, but until recently their geometric nature has remained somewhat obscure.
In ref. [52] it was proposed that Ramond-Ramond fields are also classified by K-theory,
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and that their total field strengths lie in the image of the Chern character homomor-
phism from K-theory to ordinary cohomology. This result led to the understanding
that the Ramond-Ramond field is correctly understood as a self-dual field quantized
by K-theory, and it explains various subtle issues surrounding the partition functions
of these fields. In refs. [28,29] it was proposed that these properties are most natu-
rally formulated by regarding Ramond-Ramond fields as cocycles for the differential
K-theory of spacetime, an elegant description that allows one to study the gauge the-
ory of Ramond-Ramond fields in topologically non-trivial backgrounds which natu-
rally incorporates consistency conditions such as anomaly cancellation on branes in
string theory and M-theory. These issues were among the motivations that led to the
foundational paper [37], in which a detailed, elaborate construction for generalized
differential cohomology theories is given. The importance of these mathematical the-
ories has been greatly emphasized in refs. [32,33], where they are used to define and
understand certain novel properties of quantum Hilbert spaces of abelian gauge field
fluxes. A twisted version of differential K-theory has been proposed in refs. [11,33]
and applied to the quantization of Ramond-Ramond fields in an H -flux background,
while a rigorous geometrical definition of this theory has been developed recently in
ref. [18].

The goal of this paper is to extend these lines of developments to study properties
of Ramond-Ramond fields and D-branes in orbifolds of Type II superstring theory with
vanishing H -flux. We limit our study to the cases of good (or global) orbifolds [X/G],
where X is a manifold and G is a finite group acting via diffeomorphisms of X . It is
possible to resolve singularities in the orbifold where it fails to be a manifold, and replace
the quotient space by a non-compact manifold with appropriate asymptotic behaviour.
However, orbifold singularities do not pose a problem and one can still have consistent
superstrings propagating on orbifolds [24,25]. It was proposed in ref. [62] that D-branes
on the orbifold spacetime [X/G] are classified by the G-equivariant K-theory of the
covering space X , as defined in ref. [58]. A recent overview of related developments in
the case of abelian orbifolds can be found in ref. [41].

One of the main new ingredients that we introduce into the description of D-branes
and fluxes on orbifolds is the use of Bredon cohomology [16,23]. This is a powerful
equivariant cohomology theory that has both advantages and pitfalls. In contrast to the
more commonly used Borel equivariant cohomology, Bredon cohomology is a good
“approximation” to the classification of D-brane charges. We will support this statement
by showing that it correctly captures the properties of Ramond-Ramond fields on an
orbifold, in particular it naturally takes into account the twisted sectors of the string
theory. It thereby gives a precise, rigorous realization of stringy orbifold cohomology.
We will also see that it naturally arises in the Atiyah-Hirzebruch spectral sequence for
equivariant K-theory, a fact that we shall exploit to describe new consistency conditions
for D-branes and fluxes on orbifolds in terms of classes in the Bredon cohomology of
the covering space X . Related to this feature is the fact that this equivariant cohomol-
ogy theory is the target for a Chern character homomorphism on equivariant K-theory,
defined in ref. [46], which induces an isomorphism when tensored over R. By means of
this technology, we present new compact and elegant expressions for the Wess-Zumino
couplings of Ramond-Ramond fields to D-branes on [X/G]. This generalizes the usual
Ramond-Ramond couplings [49] to orbifolds, and yields appropriate correction terms to
previous flat space formulas. The major drawback of Bredon cohomology is that it is a
rather difficult, abstract theory to define, and is even more difficult to explicitly calculate
than other equivariant cohomology theories.
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Another main achievement of this paper is a proposed definition of differential
K-theory suitable for orbifolds. Though extremely powerful and general, the machinery
developed in ref. [37] cannot be immediately applied to an equivariant cohomology
functor on the category of G-manifolds. By using Bredon cohomology and the equi-
variant Chern character, we define abelian groups that behave as natural generalizations
of the ordinary differential K-theory groups, in the sense that they agree in the case of
a trivial group and they satisfy analogous exact sequences. Although far from having
the generality of the work of ref. [37], our construction gives a systematic framework in
which to study Ramond-Ramond fields on orbifolds with a Dirac quantization condition,
including non-trivial contributions from flat potentials, and it represents a first step in the
development of generalized differential cohomology theories in the equivariant setting.
It is here that the use of Bredon cohomology is particularly important, both because
of the equivariant Chern character isomorphism and because the framework requires
explicit use of differential forms, neither of which can be accommodated directly by the
Borel construction.

The outline of the remainder of this paper is as follows. In Sect. 1 we summarize
some basic notions about the cohomology theories of spaces with group actions. In
Sect. 2 we present a detailed definition of Bredon cohomology and the construction
of the equivariant Chern character of ref. [46], as these have not made appearances
before in the physics literature. These first two sections give the main mathematical
background for the rest of the paper. In Sect. 3 we make a brief excursion into the
description of D-branes using geometric equivariant K-homology, showing that the use
of K-cycles is very well-suited to the description of fractional D-branes and their topo-
logical charges computed using equivariant Dirac operator theory. In Sect. 4 we use
Bredon cohomology and the equivariant Chern character to define Ramond-Ramond
couplings to D-branes on orbifolds and compare it with previous examples in the litera-
ture. Our formulas include the appropriate gravitational contributions which are derived
from an equivariant version of the Riemann-Roch theorem and equivariant index theory.
In Sect. 5 we give a detailed mathematical construction of the orbifold differential
K-theory groups, and prove that they fit into appropriate exact sequences which are use-
ful in applications. In Sect. 6 we use the orbifold differential K-theory to describe the flux
quantization of Ramond-Ramond fields on orbifolds by writing an equivariant version of
the Ramond-Ramond current in terms of the equivariant Chern character. We also study
the group of flat potentials in detail, and illustrate how the spectral sequence for equi-
variant K-theory can be used to determine obstruction classes in Bredon cohomology
which yield stability conditions for D-branes and fluxes on orbifolds. Appendix A con-
tains some background material on functor categories used in the main text, Appendix
B records the definitions of equivariant K-homology, while Appendix C demonstrates
the use of geometric equivariant K-cycles in the classification of D-brane charges on
orbifolds.

1. Cohomology of Spaces with Symmetries

In this section we will recall some basic notions about (generalized) equivariant coho-
mology theories that we will need throughout this paper. In the following, X denotes
a topological space and G a finite group, unless otherwise stated. Throughout a (left)
action G× X → X of G on X will be denoted (g,x) �→ g ·x. The stabilizer or isotropy
group of a point x ∈ X is denoted Gx = {g ∈ G | g · x = x}. Recall that a continuous
map f : X → Y of G-spaces is a G-map if f (g ·x) = g · f (x) for all g ∈ G and x ∈ X .
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1.1. G-complexes. A G-equivariant CW-decomposition of a G-space X consists of a
filtration Xn , n ∈ N0 such that

X =
⋃

n∈N0

Xn

and Xn is obtained from Xn−1 by “attaching” equivariant cells by the following proce-
dure. Define

X0 =
∐

j∈J0

G/K j ,

with K j a collection of subgroups of G and the standard (left) G-action on any coset
space G/K j . For n ≥ 1 set

Xn =
⎛

⎝Xn−1 �
∐

j∈Jn

(
B

n
j × G/K j

)
⎞

⎠
/
∼, (1.1)

where the equivalence relation ∼ is generated by G-equivariant “attaching maps”

φn
j : S

n−1
j × G/K j −→ Xn−1. (1.2)

One requires that X carries the colimit topology with respect to (Xn), i.e., B ⊂ X
is closed if and only if B ∩ Xn is closed in Xn for all n ∈ N0. We call the image of
B

n
j × G/K j (resp. B̊

n
j × G/K j ) a closed (resp. open) n-cell of orbit type G/K j . As

usual, we call the subspace Xn the n-skeleton of X . If X = Xn and X 	= Xn−1, then n
is called the (cellular) dimension of X and X is said to be of finite type. A G-space with
a G-equivariant CW-decomposition is called a G-complex.

When G = e is the trivial group, a G-complex is just an ordinary CW-complex.
In general, if X is a G-complex then the orbit space X/G is an ordinary CW-complex.
Conversely, there is an intimate relation between G-complexes and ordinary CW-
complexes whenever G is a discrete group. Let X be a G-space which is an ordinary
CW-complex. We say that G acts cellularly on X if

1) For each g ∈ G and each open cell E of X , the left translation g · E is again an open
cell of X ; and

2) If g · E = E , then the induced map E → E , x �→ g · x is the identity.

Then we have the following

Proposition 1.1. Let X be a CW-complex with a cellular action of a discrete group G.
Then X is a G-complex with n-skeleton Xn.

In the case that X is a smooth manifold, we require the G-action on X to be smooth
and there is an analogous result. Recall that the applicability of algebraic topology
to manifolds relies on the fact that any manifold comes equipped with a canonical
CW-decomposition. In the case in which a group acts on the manifold one has the
following result due to Illman [38,39].

Theorem 1.2. If G is a compact Lie group or a finite group acting on a smooth compact
manifold X, then X is triangulable as a finite G-complex.

The collection of G-complexes with G-maps as morphisms form a category. We are
interested in equivariant cohomology theories defined on this category (or on subcate-
gories thereof).
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1.2. Equivariant cohomology theories. We will now briefly spell out the main ingre-
dients involved in building an equivariant cohomology theory on the category of finite
G-complexes, leaving the details to the comprehensive treatments of refs. [23 and 45],
and focusing instead on some explicit examples. Fix a group G and a commutative ring
R. A G-cohomology theory E•G with values in R-modules is a collection of contravariant
functors En

G from the category of G-CW pairs to the category of R-modules indexed by
n ∈ Z together with natural transformations

δn
G(X, A) : En

G(X, A) −→ En+1
G (X) := En+1

G (X,∅)
for all n ∈ Z satisfying the axioms of G-homotopy invariance, long exact sequence of
a pair, excision, and disjoint union. The theory is called ordinary if for any orbit G/H
one has Eq

G(G/H) = 0 for all q 	= 0. These axioms are formulated in an analogous
way to that of ordinary cohomology. The new ingredient in an equivariant cohomology
theory (which we have not yet defined) are the induction structures, which we shall now
describe.

Let α : H → G be a group homomorphism, and let X be an H -space. Define the
induction of X with respect to α to be the G-space indα X given by

indα X := G ×α X.

This is the quotient of the product G×X by the H -action h·(g,x) := (g α(h−1), h·x),
with the G-action on indα X given by g′ · [g,x] = [g′ g,x]. If H < G and α is the
subgroup inclusion, the induced G-space is denoted G ×H X .

An equivariant cohomology theory E•(−) with values in R-modules consists of a
collection of G-cohomology theories E•G with values in R-modules for each group G
such that for any group homomorphism α : H → G and any H -CW pair (X, A) with
ker(α) acting freely on X , there are for each n ∈ Z natural isomorphisms

indα : En
G (indα(X, A))

≈−→ En
H (X, A) (1.3)

satisfying

(a) Compatibility with the coboundary homomorphisms:

δn
H ◦ indα = indα ◦ δn

G ;
(b) Functoriality: If β : G → K is another group homomorphism such that ker(β ◦ α)

acts freely on X , then for every n ∈ Z one has

indβ◦α = indα ◦ indβ ◦ En
K ( f1),

where

f1 : indβ (indα(X, A))
≈−→ indβ◦α(X, A)

(k, g,x) �−→ (k β(g) , x)

is a K -homeomorphism and En
K ( f1) is the morphism on K -cohomology induced

by f1; and
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(c) Compatibility with conjugation: For g, g′ ∈ G define Adg(g
′ ) = g g′ g−1. Then the

homomorphism indAdg coincides with En
G( f2), where

f2 : (X, A)
≈−→ indAdg (X, A)

x �−→
(

e , g−1 · x
)

is a G-homeomorphism, where throughout e denotes the identity element in the
group G.

Thus the induction structures connect the various G-cohomologies and keep track
of the equivariance. They will be very important in the construction of the equivari-
ant Chern character for equivariant K-theory in the next section, even if we are only
interested in a fixed group G.

Example 1.3 (Borel cohomology). Let H• be a cohomology theory for CW-pairs (for
example, singular cohomology). Define

Hn
G(X, A) := Hn (EG ×G (X, A)),

where EG is the total space of the classifying principal G-bundle EG → BG which
is contractible and carries a free G-action. This is called (equivariant) Borel cohomol-
ogy, and it is the most commonly used form of equivariant cohomology in the physics
literature. Note that H•G is well-defined because the quotient EG ×G X is unique up to
the homotopy type of X/G. The ordinary G-cohomology structures on H•G are inherited
from the cohomology structures on H•. The induction structures for H•G are constructed
as follows. Let α : H → G be a group homomorphism and X an H -space. Define

b : E H ×H X −→ EG ×G G ×α X,

(ε,x) �−→ (Eα(ε) , e , x),

where ε ∈ E H , x ∈ X and Eα : E H → EG is the α-equivariant map induced by α.
The induction map indα is then given by pullback

indα := b∗ : Hn
G(indα X) = Hn(EG ×G G ×α X) −→ Hn(E H ×H X) = Hn

H (X).

If ker(α) acts freely on X , then the map b is a homotopy equivalence and hence the
map indα is an isomorphism.

Example 1.4 (Equivariant K-theory). In ref. [58], equivariant topological K-theory is
defined for any G-complex X as the abelian group completion of the semigroup VectCG(X)

of complex G-vector bundles over X , i.e., bundles E → X together with a lift of the
G-action on X to the fibres. The higher groups are defined via iterated suspension. To
define the induction structures, recall that if X is an H -space and α : H → G is a group
homomorphism, then the map

ϕ : X −→ G ×α X

x �−→ (e,x)

is an α-equivariant map which embeds X as the subspace H×α X of G×α X , and which
induces via pullback of vector bundles the homomorphism

ϕ∗ : K•G(G ×α X) −→ K•H (X).
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This map defines the induction structure. It is invertible when ker(α) acts freely on
X , with inverse the “extension” map E �→ G ×H E for any H -vector bundle E over
X . The induction structure can be used to prove the well-known equivariant excision
theorem

K•G/N (X/N ) ∼= K•G(X), (1.4)

where N is a normal subgroup of G acting freely on X . Indeed, one has

X/N ∼= (G/N )×G X

and if we define α : G → G/N to be the quotient map, then

K•G/N ((G/N )×α X) ∼= K•G(X).

since ker(α) = N acts freely on X .

2. The Equivariant Chern Character

In this section we will describe the equivariant Chern character for the K•G functor and
its target cohomology theory, Bredon cohomology. To this end, we will introduce some
technology related to modules over functor categories, giving the necessary definitions
and directing the reader to the relevant literature for further details. Some pertinent
aspects of functor categories are summarized in Appendix A.

2.1. Chern character in topological K-theory. Let us begin by recalling some basic
notions about the ordinary Chern character. Define π−•K to be the complex K-theory
ring of the point. It is the Z-graded ring Z[[u, u−1]] of Laurent polynomials freely gen-
erated by an element u of degree deg(u) = 2, where u−1 ∈ K−2(pt) is called the Bott
element and is represented by the Hopf bundle over S

2. One then has a homomorphism

ch : K•(X) −→ H(X;R⊗ π−•K)•

which induces the natural Z-graded ring isomorphism

K•(X)⊗ R
≈−→ H(X;R⊗ π−•K)•

for any finite CW-complex X . This statement is true even if we tensor over Q. The use
here of the K-theory of the point as the coefficient ring serves just as a re-grading of the
cohomology ring H•(X;R). For example, it is easy to check that

H(X;R⊗ π−•K)0 ∼= Heven(X;R).

In particular, the Chern character tells us that K-theory and cohomology are the same
thing up to torsion.

It is natural now to ask if there exists such a morphism for equivariant K-theory. One
might naively think that the correct target theory for the equivariant Chern character
would naturally be Borel cohomology. But the problem is much more subtle than it
first may seem. The crucial point is that while in the ordinary cohomology of (finite)
CW-complexes the building blocks are the cohomology groups of a point, in the equi-
variant case they are the cohomology groups of the orbits G/H for all subgroups H
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of G, as we saw in Sect. 1.1. Any equivariant cohomology theory E•G on the category
of finite G-complexes is completely specified by its value on the orbit spaces G/H . A
localization theorem due to Atiyah and Segal [4] tells us that the Borel cohomology of a
G-space X is isomorphic to its equivariant K-theory localized at the augmentation ideal
in the representation ring R(G) consisting of all elements whose characters vanish at
the identity e in G (regarding K•G(X) as a module over R(G)). Localizing at a prime
ideal of R(G) corresponds to restricting X to the set of fixed points of an associated
conjugacy class of cyclic subgroups of G. In this sense, Borel cohomology does not take
into account the “contributions” of the non-trivial elements in G, and hence of the fixed
points of the G-action.

There are several approaches to the equivariant Chern character (see refs. [1,5,15,
31,59], for example) which strongly depend on the types of groups involved (discrete,
continuous, etc.) and on the ring one tensors with (R, C, etc.). As we are interested in
finite groups and real coefficients for our physical applications later on, we will use the
Chern character constructed in refs. [45 and 46]. Thus we proceed to the more abstract,
but powerful and compact, definition of Bredon cohomology, which will turn out to be
the best suited equivariant cohomology theory for all of our purposes.

2.2. Bredon cohomology. Let G be a discrete group. The orbit category Or(G) of G
is defined as the category whose objects are homogeneous spaces G/H , with H < G,
and whose morphisms are G-maps between them. From general considerations [23] it
follows that a G-map between two homogeneous spaces G/H and G/K exists if and
only if H is conjugate to a subgroup of K , and hence any such map is of the form

(g H �−→ g a K ) (2.1)

for some a ∈ G such that a−1 H a < K . If F is any family of subgroups of G then there
is a subcategory Or(G,F) with objects G/H for H ∈ F. A simple example is provided
by the cyclic groups G = Zp with p prime, for which the orbit category has just two
objects, G/e = G and G/G = pt.

If Ab denotes the category of abelian groups, then a coefficient system is a functor

F : Or(G)op −→ Ab,

where Or(G)op denotes the dual category to Or(G). With such a functor and any
G-complex X ,1 one can define for each n ∈ Z the group

Cn
G(X, F ) := HomOr(G)

(
C n(X) , F

)
, (2.2)

where C n(X) : Or(G)op → Ab is the projective functor defined by

C n(X)(G/H) := Cn

(
X H
)
,

the cellular homology of the fixed point complex

X H := {x ∈ X
∣∣ h · x = x ∀h ∈ H

}
. (2.3)

1 When G is an infinite discrete group, one should restrict to proper G-complexes, i.e., with finite stabilizer
for any point of X . Some further minor assumptions are needed when G is a Lie group.
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In Eq. (2.2), HomOr(G)(−,−) denotes the group of natural transformations between
two contravariant functors, with the group structure inherited by the images of the func-
tors in Ab. The functoriality property of C n(X)(G/H) is the natural one induced by the
identification X H ∼= MapG(G/H, X). Indeed, the two maps

X H −→ MapG(G/H, X), x �−→ fx ([g H ]) = g · x,
MapG(G/H, X) −→ X H , f �−→ f (H)

are easily seen to be inverse to each other, and the desired homeomorphism is obtained
by giving the space MapG(G/H, X) the compact-open topology. In particular, a G-map
(2.1) induces a cellular map X K → X H , x �→ a · x.

These groups can be expressed in terms of the G-complex structure of X . If the
n-skeleton Xn is obtained by attaching equivariant cells as in Eq. (1.1) with K j the sta-
bilizer of an n-cell of X , then the cellular chain complex C•(X) consists of G-modules
Cn(X) =⊕ j∈Jn

Z[G/K j ], and hence

C n(X)(G/H) ∼=
⊕

j∈Jn

Z
[
MorOr(G)(G/H,G/K j )

]
.

For each n ≥ 0, the group Cn
G(X , F ) is the direct limit functor over all n-cells of

orbit type G/K j in X of the groups F (G/K j ). This follows by restricting Eq. (2.2) to
the full subcategory Or(G,F(X)), with F(X) the family of subgroups of G which occur
as stabilizers of the G-action on X [50].

The Z-graded group C•G(X, F ) = ⊕n∈Z Cn
G(X, F ) inherits a coboundary oper-

ator δ, and hence the structure of a cochain complex, from the boundary operator on
cellular chains. To a natural transformation f : C n(X)→ F , one associates the natural
transformation δ f defined by

δ f (G/H) : Cn

(
X H
)
−→ F (G/H)

σ �−→ f (G/H)(∂σ )

for σ ∈ Cn−1(X H ), with naturality induced from that of the cellular boundary operator
∂ . Then the Bredon cohomology of X with coefficient system F is defined as

H•G(X; F ) := H
(
C•G(X, F ) , δ

)
.

This defines a G-cohomology theory. See ref. [44] for the proof that H•G(X; F ) is
an equivariant cohomology theory, i.e., for the definition of the induction structure. One
can also define cohomology groups by restricting the functors in Eq. (2.2) to a subcate-
gory Or(G,F). The definition of Bredon cohomology is independent of F as long as F
contains the family F(X) of stabilizers [50]. This fact is useful in explicit calculations. In
particular, by taking F = H to consist of a single subgroup, one shows that the Bredon
cohomology of G-homogeneous spaces is given by

H•G(G/H ; F ) = = H0
G(G/H ; F ) = = F (G/H). (2.4)

Example 2.1 (Trivial group). When G = e is the trivial group, i.e., in the non-equivariant
case, the functors C n(X) and F can be identified with the abelian groups Cn(X) =
C n(X)(e) and F = F (e). Then

Cn
e (X, F) = Cn(X, F)
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and one has Hn
e (X; F ) = H (Cn(X, F), δ), i.e., the ordinary nth cohomology group of

X with coefficients in F .

Example 2.2 (Free action). If the G-action on X is free, then all stabilizers K j are trivial
and X H = ∅ for every H ≤ G, H 	= e. In this case one may take F = e to compute the
cochain complex

C•G(X, F ) ∼= HomG
(
C•(X) , F (G/e)

)

and so the Bredon cohomology H•G(X; F ) coincides with the equivariant cohomology

H•G
(
X ; F (G/e)

)

of X with coefficients in the G-module F (G/e) = F (G). In the case of the constant
functor F = Z, with Z (G/H) = Z for every H ≤ G and the value on morphisms in
Or(G)op given by the identity homomorphism of Z, this group reduces to the ordinary
cohomology H•(X/G;Z).
Example 2.3 (Trivial action). If the G-action on X is trivial, then the collection of isot-
ropy groups K j for the G-action is the set of all subgroups of G and X H = X for all
H ≤ G. In this case the functor C n(X) can be decomposed into a sum over n-cells of
projective functors P K j with K j = G [50], and so one has

HomOr(G)

(
C n(X) , F

) ∼= Hom
(

Cn(X) , lim←− Or(G)op F (G/H)
)
,

where the inverse limit functor is taken over the opposite category Or(G)op. It follows
that the Bredon cohomology

H•G(X; F ) = H•
(
X ; F (G/G)

)

is the ordinary cohomology of X with coefficients in the abelian group F (G/G) =
F (pt).

2.3. Representation ring functors. In what follows we will specialize the coefficient
system for Bredon cohomology to the representation ring functor F = R(−) defined
on the orbit category Or(G) by sending the left coset G/H to R(H), the complex
representation ring of the group H . A morphism (2.1) is sent to the homomorphism
R(K ) → R(H) given by first restricting the representation from K to the subgroup
conjugate to H , and then conjugating by a. Since R(−) is a functor to rings, the Bredon
cohomology H•G(X; R(−)) naturally has a ring structure. Note that

R(H) ∼= K0
G(G/H) = K•G(G/H) , (2.5)

which follows from the induction structure of Example 1.4 with X = pt and α the
subgroup inclusion H ↪→ G. By Eq. (2.4) the group (2.5) also coincides with the Bre-
don cohomology group H•G(G/H ; R(−)), which is already an indication that Bredon
cohomology is a better relative of equivariant K-theory than Borel cohomology. Indeed,
using the induction structure of Example 1.3 one shows that the Borel cohomology

H•G(G/H) = H•(B H)
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coincides with the cohomology of the classifying space B H = E H/H , which computes
the group cohomology of H and is typically infinite-dimensional (even for finite groups
H ). In this paper we will show that the Bredon cohomology H•G(X; R(−)) gives a more
precise realization of the stringy orbifold cohomology of X in the context of open string
theory.

In the construction of the equivariant Chern character in Sect. 2.4 below, it will be
important to represent the rational Bredon cohomology H•G(X;Q⊗ R(−)) as a certain
group of homomorphisms of functors, similarly to the cochain groups (2.2). For this, we
introduce another category Sub(G). The objects of Sub(G) are the subgroups of G,2

and the morphisms are given by

MorSub(H,K ) :=
{

f : H → K
∣∣ ∃ g ∈ G, g H g−1 ≤ K , f = Adg

} /
Inn(K ).

In particular, there is a functor Or(G) → Sub(G) which sends the object G/H to
H and the morphism (2.1) in Or(G) to the homomorphism (g �→ a−1 g a) in Sub(G).
If a lies in the centralizer

ZG(H) :=
{
g ∈ G

∣∣ g−1 H g = H
}

(2.6)

of H in G, then the morphism (2.1) is sent to the identity map. Any functor F :
Sub(G)op → Ab can be naturally regarded as a functor on Or(G)op.

Define the quotient functors C qt• (X) , H qt• (X) : Sub(G)op → Ab by

C qt• (X)(H) := C•
(

X H/ZG(H)
)

and H qt• (X)(H) := H•
(

X H/ZG(H)
)
.

For any functor F : Sub(G)op → Ab one has

Hom
(

C•(X H/ZG(H)) , F (H)
) ∼= HomZG (H)

(
C•(X H ), F (H)

)
.

By observing that the centralizer (2.6) is precisely the group of automorphisms of
G/H in the orbit category Or(G) sent to the identity map in the subgroup category
Sub(G), we finally have

C•G(X, F ) = HomOr(G)

(
C •(X) , F

) ∼= HomSub(G)

(
C qt• (X) , F

)
. (2.7)

At this point one can apply Eq. (2.7) to the rational representation ring functor F =
Q⊗ R(−), which by construction can be regarded as an injective functor Sub(G)op →
Ab, to prove the

Lemma 2.4 ([46]). For any finite group G and any G-complex X, there exists an iso-
morphism of rings

�X : H•G
(
X ; Q⊗ R(−)) ≈−→ HomSub(G)

(
H qt• (X) , Q⊗ R(−)

)
.

2 If G is infinite then one should restrict to finite subgroups of G.
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2.4. Chern character in equivariant K-theory. Before spelling out the definition of the
equivariant Chern character, we recall some basic properties of the equivariant K-theory
of a G-complex X . Let H be a subgroup of G, and consider the fixed point subspace
of X defined by Eq. (2.3). The action of G does not preserve X H , but the action of the
normalizer NG(H) of H in G does. If we denote with i : X H ↪→ X the inclusion of X H

as a subspace of X , and with α : NG(H) ↪→ G the inclusion of NG(H) as a subgroup
of G, then we naturally have the equality

i(n · x) = α(n) · i(x)
for all n ∈ NG(H) and x ∈ X H . It follows that the induced homomorphism on equi-
variant K-theory is a map [58]

i∗ : K•G(X) −→ K•NG (H)

(
X H
)

which is called a restriction morphism.
We also need a somewhat less known property [46]. Let N � G be a finite normal

subgroup, and let Rep(N ) be the category of (isomorphism classes of) irreducible com-
plex representations of N . Let X be a (proper) G/N -complex, and let G act on X via
the projection map G → G/N . Then for any complex G-vector bundle E → X and
any representation V ∈ Rep(N ), define HomN (V, E) as the vector bundle over X with
total space

HomN (V, E) :=
⋃

x∈X

HomN (V, Ex),

where N acts on the fibres of E because of the action of G via the projection map. Now
if H ≤ G is a subgroup which commutes with N , [H, N ] = e, then one can induce an
H -vector bundle from HomN (V, E) by defining (h · f )(v) = h · f (v), v ∈ V for any
h ∈ H and any f ∈ HomN (V, E) (remembering that G acts on E). Hence there is a
homomorphism of rings

� : K•G(X) −→ K•H (X)⊗ R(N )

defined on G-vector bundles by

� ([E]) :=
∑

V∈Rep(N )

[HomN (V, E)]⊗ [V ]. (2.8)

This homomorphism satisfies some naturality properties which are described in detail
in ref. [46]. Note that the sum (2.8) is finite, since N is a finite subgroup.

We are now ready to construct the equivariant Chern character as a homomorphism

chX : K0,1
G (X) −→ Heven,odd

G

(
X ; Q⊗ R(−))

for any finite proper G-complex X . The strategy used in ref. [46] is to construct Z2-graded
homomorphisms

chH
X : K•G(X) −→ Hom

(
H•(X H/ZG(H)) , Q⊗ R(H)

)
(2.9)
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for any finite subgroup H , and then glue them together as H varies through the finite
subgroups of G. To define the homomorphism (2.9), we first compose the ring homo-
morphisms

K•G(X)
i∗−→ K•NG (H)

(
X H
)

�−→ K•ZG (H)

(
X H
)
⊗ R(H)

π∗2⊗id−−−→ K•ZG (H)

(
EG × X H

)
⊗ R(H),

where π2 : EG × X H → X H is the projection onto the second factor. By using the
induction structure of Example 1.4, one then has

K•ZG (H)

(
EG × X H

)
⊗ R(H)

≈−→ K•
(

EG ×ZG (H) X H
)
⊗ R(H)

ch⊗id−−−→ H
(

EG ×ZG (H) X H ; Q⊗ π−•K
)• ⊗ R(H),

where ch is the ordinary Chern character. One finally has

H•
(

EG ×ZG (H) X H ; Q

)
⊗ R(H)

≈−→ H•
(

X H/ZG(H) ; Q

)
⊗ R(H)

∼= Hom
(

H•(X H/ZG(H)) , Q⊗ R(H)
)
,

where the first isomorphism follows from the Leray spectral sequence by observing that
the fibres of the projection

EG ×ZG (H) X H −→ X H / ZG(H)

are all classifying spaces of finite groups, having trival reduced cohomology with
Q-coefficients and are therefore Q-acyclic.

The equivariant Chern character is now defined as3

chX =
⊕

H≤G

chH
X . (2.10)

By using the various naturality properties of the homomorphism (2.8) [46], one sees

that chX takes values in HomSub(G)

(
H qt• (X) , Q⊗ R(−)

)
, and by Lemma 2.4 it is thus

a Z2-graded map

chX : K•G(X) −→ HomSub(G)

(
H qt• (X), Q⊗ R(−)

) ∼= H•G
(
X ; Q⊗ R(−)).

This map is well-defined as a ring homomorphism because all maps involved above
are homomorphisms of rings. As with the definition of Bredon cohomology, the sum
(2.10) may be restricted to any family of subgroups of G containing the set of stabilizers
F(X).

To conclude, we have to prove that this map becomes an isomorphism upon tensoring
over Q. For this, one proves that the morphism chX in Eq. (2.10) is an isomorphism on
homogeneous spaces G/H , with H a finite subgroup of G, and then uses induction on
the number of orbit types of cells in X along with the Mayer-Vietoris sequences for the

3 If G is infinite then the direct sum in Eq. (2.10) is understood as the inverse limit functor over the dual
subgroup category Sub(G)op.
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pushout squares induced by the attaching G-maps (1.2). The isomorphism on G/H is a
consequence of the isomorphisms (2.4) and (2.5). The details may be found in ref. [46].
Let π−•K G(−) be the functor on Or(G) defined by G/H �→ K•G(G/H). Then one has
the following

Theorem 2.5. For any finite proper G-complex X, the Chern character chX extends to
a natural Z-graded isomorphism of rings

chX ⊗Q : K•G(X)⊗Q
≈−→ HG

(
X ; Q⊗ π−•K G(−)

)•
.

3. D-Branes and Equivariant K-Cycles

In this section we will make some remarks concerning the topological classification
of D-branes and their charges on global orbifolds of Type II superstring theory with
vanishing H -flux. Let X be a smooth manifold and G a (finite) group acting by diffeo-
morphisms of X . Ramond-Ramond charges on the global orbifold [X/G] are classified
by the equivariant K-theory K•G(X) as defined in Example 1.4 [34,54,62]. Dually, the
equivariant K-homology KG• (X) leads to an elegant description of fractional D-branes
pinned at the orbifold singularities in terms of equivariant K-cycles. In the following
we will frequently refer to Appendix B for detailed definitions and technical aspects of
equivariant K-homology, focusing instead here on some of the more qualitative aspects
of D-branes on orbifolds in this language. In the remainder of this paper we will assume
for definiteness that G is a finite group.

3.1. Fractional D-branes. As in the non-equivariant case G = e [56,57,60], a very
natural description of D-branes in the orbifold space, which captures the inherent geo-
metrical picture of D-brane states involving wrapped cycles in spacetime, is provided
by the topological realization of the equivariant K-homology groups KG• (X). The cycles
for this homology theory, called G-equivariant K-cycles, live in an additive category
DG(X) whose objects are triples (W, E, f ), where W is a G-spinc manifold without
boundary, E is a G-vector bundle over W , and

f : W −→ X (3.1)

is a G-map. The group KG• (X) is the quotient of this category by the equivalence rela-
tion generated by bordism, direct sum, and vector bundle modification, as detailed in
Appendix B. Note that W need not be a submanifold of spacetime. However, since
X is a manifold, we can restrict the bordism equivalence relation to differential bor-
dism [56] and assume that the map (3.1) is a differentiable G-map in equivariant
K-cycles (W, E, f ) ∈ DG(X). In this way the category DG(X) extends the standard
K-theory classification to include branes supported on non-representable cycles in space-
time. This definition of equivariant K-homology thus gives a concrete geometric model
for the topological classification of D-branes (W, E, f ) in a global orbifold [X/G]
which captures the physical constructions of orbifold D-branes as G-invariant states of
branes on the covering space X . In the subsequent sections we will study the pairing of
Ramond-Ramond fields with these D-branes.
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Consider a D-brane localized at a generic point in the orbifold [X/G]with the action
of the regular representation of G on the fibres of its Chan-Paton gauge bundle, i.e., the
natural action of the group algebra C[G] as bounded linear operators 2(G)→ 2(G).
It corresponds to a G-orbit of such branes on the leaves Xg = {x ∈ X | g ·x = x}, g ∈ G
of the covering space X . At a G-fixed point, this brane splits up into a set of fractional
branes according to the decomposition of the representation of G on the fibres of the
Chan-Paton bundle into irreducible G-modules. Stable fractional D-branes correspond
to bound states of branes wrapping various collapsed cycles at the fixed points. They are
thus stuck at the orbifold points and provide the open string analogs of “twisted sectors”.

To formulate this physical construction in the language of equivariant K-cycles
(W, E, f ), let G∨ denote the set of conjugacy classes [g] of elements g ∈ G. It can
be regarded as a set of representatives for the isomorphism classes π0Rep(G), where
Rep(G) is the additive category of irreducible complex representations of G which coin-
cides with the category of D-brane boundary conditions at the orbifold points. There is
a natural subcategory DG

frac(X) of DG(X) consisting of triples (W, E, f ) for which W
is a G-fixed space, i.e., for which

W g = W (3.2)

for all g ∈ G. By G-equivariance this implies f (W )g = f (W ) for all g ∈ G, and so the
image of the brane worldvolume lies in the subspace

f (W ) ⊂
⋂

g∈G

Xg.

This is precisely the set of G-fixed points of X , and so the objects (W, E, f ) of the cate-
gory DG

frac(X) are naturally pinned to the orbifold points. We call DG
frac(X) the category

of “maximally fractional D-branes”.
In this case, an application of Schur’s lemma shows that the Chan-Paton bundle

admits an isotopical decomposition and there is a canonical isomorphism of G-bundles

E ∼=
⊕

[g]∈G∨
E[g] ⊗ 11[g] with E[g] = = HomG

(
11[g] , E

)
, (3.3)

where E[g] is a complex vector bundle with trivial G-action and 11[g] is the G-bundle
W × V[g] with γ : G → End(V[g]) the irreducible representation corresponding to the
conjugacy class [g] ∈ G∨. This isotopical decomposition defines the action of G on the
Chan-Paton factors of the D-brane, and it implies the well-known isomorphism

K•G(W ) ∼= R(G)⊗ K•(W ) (3.4)

for G-fixed spaces W [58]. This is a special case of the homomorphism � defined in
Eq. (2.8). From the direct sum relation in equivariant K-homology it follows that a
D-brane, represented by a K-cycle (W, E, f ), splits at an orbifold point into a sum over
irreducible fractional branes represented by the K-cycles (W, E[g] ⊗11[g], f ), [g] ∈ G∨.

It is important to realize that the full category DG(X) contains much more informa-
tion, and in particular the fractional D-branes will not generically form a spanning set
of K-cycles for the group KG• (X) (except in some specific examples). However, it fol-
lows from the bordism relation in equivariant K-homology that any two G-equivariant
K-cycles (Wi , Ei , fi ), i = 0, 1 which are bordant along the same G-orbit determine
the same element in KG• (X). This is expected since a purely topological classification
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such as equivariant K-homology cannot capture the positional moduli associated with
the regular D-branes in X/G.

A related way to understand the role of fractional branes is through the connec-
tion between geometric K-homology and bordism theory [56]. Let MSpinc•(X) be the
ordinary spinc bordism group of X , which forgets about the G-action and consists of
spinc bordism classes of pairs (W, f ). Then there is a map

MSpinc•(X)⊗MSpinc•(pt) Rep(G) −→ DG
frac(X) ,

(W, f )⊗ V �−→ (W, W × V, f ), (3.5)

which descends to give a homomorphism

MSpinc•(X)⊗MSpinc•(pt) KG• (pt) −→ KG• (X).

When G = e this is the isomorphism of K•(pt)-modules induced by the Atiyah-
Bott-Shapiro orientation, and the map (3.5) determines K-cycle generators in terms
of spinc bordism generators [56]. The equivariant extension of the Atiyah-Bott-Shapiro
construction is given in ref. [42] in terms of finite-dimensional Z2-graded G-Clifford
modules. Since any G-Clifford module can be built as a direct sum of tensor products
of G-modules and ordinary Clifford modules (see Appendix B), there is an isomor-
phism of R(G)-modules K•G(pt) ∼= R(G)⊗K•(pt) and so these representation modules
contain no new information about the orbifold group. This seems to suggest that, at
least in certain cases, spanning sets of equivariant K-cycles can be taken to lie in the
subcategory DG

frac(X).

3.2. Topological charges. The topological charge of a fractional D-brane, in a given
closed string twisted sector of the orbifold string theory on a G-spinc manifold X , can
be computed by using the equivariant Dirac operator theory developed in Appendix B.
The equivariant index of the G-invariant spinc Dirac operator D/ X

E coupled to a G-vector
bundle E → X takes values in K•G(pt) ∼= R(G). We can turn this into a homomorphism
on KG• (X) with values in Z by composing with the projection R(G) → Z defined by
taking the multiplicity of a given representation

γ : G −→ End(Vγ ) (3.6)

of G on a finite-dimensional complex vector space Vγ . There is a corresponding class
in the KK-theory group

[γ ] ∈ KK•
(
C[G] , End(Vγ )

)

which is represented by the Kasparov module (Vγ , γ, 0) associated with the extension
of the representation (3.6) to a complex representation of group ring C[G]. By Morita
equivalence, the Kasparov product with [γ ] is the homomorphism on K-theory

K0 (C[G]) −→ K0
(
End(Vγ )

) ∼= K0(C) ∼= Z

induced by γ : C[G] → End(Vγ ). We may then define a homomorphism

µγ : KG
0 (X) −→ Z
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of abelian groups by

µγ ([W, E, f ]) = Indexγ
(

f∗[D/ W
E ]
)
:= ass

(
f∗[D/ W

E ]
)
⊗C[G] [γ ] (3.7)

on equivariant K-cycles (W, E, f ) ∈ DG(X) (and extended linearly), where

ass : KG• (X) −→ K• (C[G])
is the analytic assembly map constructed in Appendix B.

3.3. Linear orbifolds. Let us now consider a simple class of examples wherein every-
thing can be made very explicit. Let V be a complex vector space of dimension
dimC(V ) = d ≥ 1, and let G be a finite subgroup of SL(V ). Our spacetime X is
the G-space identified with the product

X = R
p,1 × V ,

where G acts trivially on the Minkowski space R
p,1. Fractional D-branes carrying them-

selves a complex linear representation of G, which is a submodule of R
p,1 × V , have

worldvolumes W linearly embedded in the subspace R
p,1 and have transverse space

given by the orthogonal complement f (W )⊥ ∼= V with respect to a chosen inner prod-
uct. Since the space of hermitian metrics is contractible, all topological quantities below
are independent of this choice.

As a G-space, V is equivariantly contractible to a point and hence its compactly
supported equivariant K-theory is given by [4]

K•G,cpt(V ) ∼= K•G(pt) ∼= R(G) = Z
|G∨|.

This group coincides with the Bredon cohomology H•G,cpt(V ; R(−)), owing to the fact
that the equivariant Chern character chG/H of Sect. 2.4 is the identity map (since the
non-equivariant Chern character ch = c0 : K0(pt) → H0(pt;Z) is the identity map).
It follows that the fractional D-branes, as defined by elements of equivariant K-theory,
can be identified with representations of the orbifold group4

γ =
|G∨|⊕

a=1

Na γa

consisting of Na ≥ 0 copies of the ath irreducible representation

γa : G −→ End(Va) , a = = 1, . . . ,
∣∣G∨
∣∣ ,

which defines the action of G on the fibres of the Chan-Paton bundle. More precisely,
each irreducible fractional brane is associated to the G-bundle V × Va over V .

By Poincaré duality, it follows from Proposition 2.1 of ref. [56] that a basis for
the equivariant K-homology group KG• (V ) is provided by the geometric equivariant
K-cycles (V, V×Va, idV ), a = 1, . . . , |G∨|. By G-homotopy invariance [56, Lemma 1.4]

4 If the transverse space V is instead a real linear G-module, then throughout one should restrict to the sub-
ring of R(G) consisting of representations associated to conjugacy classes [g] ∈ G∨ for which the centralizer
ZG (g) acts on the fixed point subspace V g by oriented automorphisms [40]. This will follow immediately
from the isomorphism (4.7) below with X = V .
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these cycles can be contracted to [pt, Va, i], where i is the inclusion of a point pt ⊂ V
whose induced homomorphism

i∗ : KG• (pt) −→ KG• (V )

can be taken to be the identity map R(G)→ R(G). This is simply the physical statement
that the stable fractional branes in this case are D0-branes in Type IIA string theory (the
Type IIB theory containing no such states). The G-invariant Dirac operator D/ pt

Va
is just

Clifford multiplication twisted by the G-module Va , and thus the topological charges
(3.7) of the corresponding fractional branes in the twisted sector labelled by b are given
by

µb ([pt, Va, i]) = = Indexγb

(
[D/ pt

Va
]
)
= = [Va ⊗ (�+ −�−)

]⊗C[G] [γb] ,

where �± are the half-spin representations of SO(2d) on V ∼= C
d regarded as C[G]-

modules. Acting on the character ring the projection gives [W ] ⊗C[G] [γb] = χW (gb),
where χW : G → C is the character of the G-module W and [gb] ∈ G∨ is the conjugacy
class corresponding to the irreducible representation γb.

4. Delocalization and Ramond-Ramond Couplings

The purpose of this section is to describe the delocalization of Bredon cohomology and
the equivariant Chern character, introduced in Sect. 2, and to apply it to the study of
the coupling between Ramond-Ramond potentials and the D-branes of the previous sec-
tion. In the following we will require some standard facts concerning string theory on
global orbifolds, particularly its low-energy field theory content. For more details see
refs. [24,25].

4.1. Closed string spectrum. The boundary states corresponding to the fractional branes
constructed in Sect. 3 have components in the twisted sectors of the closed string Hil-
bert space H of orbifold string theory on X . The closed string is an embedding x :
S

1×R→ X of the worldsheet cylinder, with local coordinates (σ, τ ) ∈ S
1×R, into the

G-spinc spacetime manifold X . The Hilbert space H of physical string states decom-
poses into a direct sum over twisted sectors, each characterized by a conjugacy class,
as

H =
⊕

[g]∈G∨
H[g] (4.1)

with only G-invariant states surviving in each superselection sector H[g]. Actually, the
Hilbert space factorizes into one sector for each element of the group G, but the action
of G mixes the sectors within a given conjugacy class. The subspaces in Eq. (4.1) are
thus defined as

H[g] :=
⊕

h∈[g]
Hh ,

where Hh is the subspace of states induced by the twisted string field boundary condition

x(σ + 2π, τ) = h · x(σ, τ ) (4.2)
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with an analogous condition on the worldsheet fermion fields (using a lift Ĝ of the orb-
ifold group). Then G acts on the subspace H[g], and projecting onto G-invariant states
in H[g] is equivalent to projecting onto ZG(h)-invariant states in Hh for any h in [g].

The low-energy limit of Type II orbifold superstring theory on X contains Ramond-
Ramond fields C[g] coming from the various twisted sectors. The twisted boundary
conditions (4.2) on the string embedding map imposes constraints on the low-energy
spectrum. For example, the untwisted sector given by g = e contains Ramond-Ramond
fields defined on the entire spacetime manifold X , while the twisted sector represented
by g 	= e gives rise to fields defined only on the fixed point submanifold Xg . The
GSO projection then enforces the properties that the Ramond-Ramond form potentials
C[g] determine self-dual fields in each twisted sector, and that they be of odd degree in
Type IIA theory and of even degree in Type IIB theory.

The Ramond-Ramond fields can thus be “organised” into the differential complex

�•G(X;R) :=
⊕

[g]∈G∨
�•
(
Xg ; R

)ZG (g)
. (4.3)

Here we consider only fields coming from inequivalent twisted sectors and make a
choice of submanifold Xg , since for any conjugate element h ∈ [g] there is a diffeomor-
phism Xg ∼= Xh . (No choice is needed in the case in which G is an abelian group.) As
d ◦ g∗ = g∗ ◦ d for all g ∈ G, the derivation is given by

dG :=
⊕

[g]∈G∨
dg,

where dg = d : �•(Xg;R) → �•(Xg;R) is the usual de Rham exterior derivative.
Note that only the centralizer subgroup of g in G acts (properly) on Xg .

4.2. Delocalization of Bredon cohomology. We will now show how Bredon cohomol-
ogy can be used to compute the cohomology of the complex (4.3) of orbifold Ramond-
Ramond fields by giving a delocalized description of Bredon cohomology with real
coefficients, following refs. [50 and 46] where further details can be found. This is the
stringy orbifold cohomology of X , defined as the ordinary (real) cohomology of the
orbifold resolution X̃ =∐[g]∈G∨ Xg/ZG(g). Note that there is a natural surjective map

π : X̃ → X defined by (x, [g]) �→ x, and a natural injection X ↪→ X̃ into the connected
component of X̃ corresponding to the untwisted sector [g] = [e].

Denote with R(−) the real representation ring functor R⊗R(−) on the orbit category
Or(G). Let 〈G〉 denote the set of conjugacy classes [C] of cyclic subgroups C of G.
Let R C (−) be the contravariant functor on Or(G) defined by R C (G/H) = 0 if [C]
contains no representative g C g−1 < H , and otherwise R C (G/H) is isomorphic to the
cyclotomic field R(ζ|C|) over R generated by the primitive root of unity ζ|C| of order
|C |. A standard result from the representation theory of finite groups then gives a natural
splitting

R(−) =
⊕

[C]∈〈G〉
R C (−).

By definition, for any module M (−) over the orbit category one has

HomOr(G)

(
M (−) , R C (−)

) ∼= HomNG (C)

(
M (G/C) , R C (G/C)

)

∼= M (G/C)⊗NG (C) R C (G/C),
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where the normalizer subgroup NG(C) acts on R C (G/C) ∼= R(ζ|C|) via identification
of a generator of C with ζ|C|.

These facts together imply that the cochain groups (2.2) with F = R(−) admit a
splitting given by

C•G
(
X , R(−)) ∼=

⊕

[C]∈〈G〉
C•
(

XC
)
⊗NG (C) R C (G/C).

As the centralizer ZG(C) acts properly on XC , the natural map

⊕

[C]∈〈G〉
C•
(

XC
)
⊗NG (C) R C (G/C) −→

⊕

[C]∈〈G〉
C•
(

XC/ZG(C)
)

⊗WG (C) R C (G/C)

is a cohomology isomorphism, where WG(C) := NG(C)/ZG(C) is the Weyl group
of C < G which acts by translation on XC/ZG(C). Since R C (G/C) is a projective
R[WG(C)]-module, it follows that for any proper G-complex X the Bredon cohomology
of X with coefficient system R⊗ R(−) has a splitting

H•G
(
X ; R⊗ R(−)) ∼=

⊕

[C]∈〈G〉
H•
(

XC/ZG(C) ; R

)
⊗WG (C) R C (G/C). (4.4)

At this point, we note that the dimension of the R-vector space

R C (G/C)WG (C) ∼= R⊗WG (C) R C (G/C)

is equal to the number of G-conjugacy classes of generators for C . We also use the fact
that for a finite group G a sum over conjugacy classes of cyclic subgroups is equiv-
alent to a sum over conjugacy classes of elements in G, and that X 〈g〉 = Xg and
ZG(〈g〉) = ZG(g). One finally obtains a splitting of real Bredon cohomology groups5

H•G
(
X ; R⊗ R(−)) ∼=

⊕

[g]∈G∨
H•
(
Xg ; R

)ZG (g) (4.5)

into ordinary cohomology groups

H•
(
Xg ; R

)ZG (g) ∼= H•
(
Xg/ZG(g) ; R

) ∼= H
(
�•(Xg;R)ZG (g) , d

)

with constant coefficients R. The group on the right-hand side of Eq. (4.5) corresponds to
the (real) “delocalized equivariant cohomology” H•(

∐
g∈G Xg)G⊗R defined by Baum

and Connes [6,9]. Note that this group is (non-canonically) isomorphic to R(G) ⊗
H•(X;R) when the G-action on X is trivial. Furthermore, by using Theorem 2.5 one
also has a decomposition for equivariant K-theory with real coefficients given by

K•G(X)⊗ R ∼=
⊕

[g]∈G∨

(
K•(Xg)⊗ R

)ZG (g)
.

However, this decomposition captures only the torsion-free part of the group K•G(X).

5 This splitting in fact holds over Q [50].
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4.3. Delocalization of the equivariant Chern character. The complex (4.3) of orbifold
Ramond-Ramond fields can also be used to provide an explicit geometric description
of the (complex) equivariant Chern character defined in Sect. 2.4. We will now explain
this construction, referring the reader to ref. [17] for the technical details. Consider
a complex G-bundle E over X equipped with a G-invariant hermitian metric and a
G-invariant metric connection∇E . One can then define a closed G-invariant differential
form

ch(E) ∈ �•(X;C)G

in the usual way by the Chern-Weil construction

ch(E) := Tr
(

exp(−F E/2π i )
)
,

where F E is the curvature of the connection ∇E . It represents a cohomology class

[ch(E)] ∈ H•(X;C)G

in the fixed point subring of the action of G as automorphisms of H•(X;C). By using
the definition of the homomorphisms (2.9), with Q substituted by C and H = e, one
can establish the equality

[ch(E)] = che
X ([E]) .

Let C < G be a cyclic subgroup, and define the cohomology class

[ch(g, E)] ∈ H•
(

XC ; C

)ZG (C) ∼= H•
(

XC/ZG(C) ; C

) ∼= H
(
�•(XC ;C)ZG (C), d

)

represented by

ch(g, E) := Tr
(
γ (g) exp(−F E

C /2π i )
)
,

where g is a generator of C , F E
C is the restriction of the invariant curvature two-form

F E to the fixed point subspace XC , and γ is a representation of C on the fibres of the
restriction bundle E |XC which is an NG(C)-bundle over XC . The character χC naturally
identifies R(C) ⊗ C with the C-vector space of class functions C → C. By using the
splitting (4.4) for complex Bredon cohomology, one can then show that

chC
X ([E]) (g) = [ch(g, E)]

up to the restriction homomorphism R(C)⊗ C→ C C (G/C) of rings with kernel the
ideal of elements whose characters vanish on all generators of C .

Using Eq. (2.10) we can then define the map

chC : VectCG(X) −→
⊕

[g]∈G∨
�even (Xg ; C

)ZG (g)

from complex G-bundles E → X given by

chC(E) =
⊕

[g]∈G∨
Tr
(
γ (g) exp(−F E

g /2π i )
)
. (4.6)
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At the level of equivariant K-theory, from Theorem 2.5 it follows that this map induces
an isomorphism

chC : K•G(X)⊗ C
≈−→ HG

(
X ; C⊗ π−•K G(−)

)•
, (4.7)

where we have used the splitting (4.5). The map (4.6) coincides with the equivariant
Chern character defined in ref. [5].

4.4. Wess-Zumino pairings. We now have all the necessary ingredients to define a cou-
pling of the Ramond-Ramond fields to a D-brane in the orbifold [X/G]. In this section
we will only consider Ramond-Ramond fields which are topologically trivial, i.e., ele-
ments of the differential complex (4.3), and use the delocalized cohomology theory
above by working throughout with complex coefficients. Under these conditions we can
straightforwardly make contact with existing examples in the physics literature and write
down their appropriate generalizations.

To this aim, we introduce the bilinear product

∧G : �•G(X;R)⊗�•G(X;R) −→ �•G(X;R)

defined on ω =⊕[g]∈G∨ ω[g] and η =⊕[g]∈G∨ η[g] by

ω ∧G η :=
⊕

[g]∈G∨
ω[g] ∧g η[g], (4.8)

where ∧g = ∧ is the usual exterior product on �•(Xg;R). There is also an integration

∫ G

X
: �•G(X;R) −→ R.

If ω ∈ �•G(X;R) then we set

∫ G

X
ω := 1

|G∨ |
∑

[g]∈G∨

∫

Xg/ZG (g)
ω[g].

The normalization ensures that
∫ G

X ω = ∫X ω when G acts trivially on X and
ω ∈ �•(X;R) is “diagonal” in R(G)⊗�•(X;R).

Suppose now that f : W → X is the smooth immersed worldvolume cycle of a
wrapped D-brane state (W, E, f ) ∈ DG(X) in the orbifold [X/G], i.e., W is a G-
spinc manifold equipped with a G-bundle E → W and an invariant connection ∇E on
E . We define the Wess-Zumino pairing

WZ : DG(X)×�•G(X;C) −→ C

between such D-branes and Ramond-Ramond fields as

WZ ((W, E, f ) , C) =
∫ G

W
C̃ ∧G chC(E) ∧G R(W, f ), (4.9)



Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory 669

where C̃ = f ∗C is the pullback along f : W → X of the total Ramond-Ramond field

C =
⊕

[g]∈G∨
C[g]

and the equivariant Chern character is given by Eq. (4.6) with γ giving the action of G
on the Chan-Paton factors of the D-brane. The closed worldvolume form R(W, f ) ∈
�even

G,cl(W ;C) represents a complex Bredon cohomology class which accounts for gravi-
tational corrections due to curvature in the spacetime X and depends only on the bordism
class of (W, f ). It will be constructed explicitly in Sect. 4.7 below in terms of the geom-
etry of the immersed cycle f : W → X and of the G-bundle ν → W given by

ν = = ν(W ; f ) = = f ∗(TX )⊕ TW . (4.10)

It is easily seen that, modulo the curvature contribution R(W, f ), the very natural
expression (4.9) reduces to the usual Wess-Zumino coupling of topologically trivial
Ramond-Ramond fields to D-branes in the case G = e. But even if a group G 	= e
acts trivially on the brane worldvolume W (or on the spacetime X ), there can still be
additional contributions to the usual Ramond-Ramond coupling if E is a non-trivial
G-bundle. This is the situation, for instance, for fractional D-branes

(W, E, f ) ∈ DG
frac(X)

placed at orbifold singularities. In this case, we may use the isotopical decomposition
(3.3) of the Chan-Paton bundle along with Eq. (3.2). Then the Wess-Zumino pairing
(4.9) descends to a pairing

WZfrac : DG
frac(X)×�•G(X;C) −→ C

with the additive subcategory of fractional branes at orbifold singularities given by

WZfrac ((W, E, f ) , C)=
∫

W

⎛

⎝ 1

|G∨ |
∑

[g]∈G∨
C̃[g] ∧ ch

(
E[g]
)
χγ (g)

⎞

⎠ ∧ R(W, f ),

(4.11)

whereχγ : G → C is the character of the representationγ and R(W, f ) ∈ �even
cl (W ;C).

One can immediately read off from the Wess-Zumino action (4.11) the Ramond-Ramond
charges of D0-branes, and the state corresponding to the representation γ has (fractional)
charge

Q[g]γ =
χγ (g)

|G∨ |
with respect to the twisted Ramond-Ramond one-form field C (1)

[g] . These charges agree
with both those of an open string disk amplitude computation and a boundary state anal-
ysis for fractional D0-branes [21]. Our general formula (4.9) includes also the natural
extension to the Ramond-Ramond couplings of regular D-branes which move freely in
the bulk of X under the action of G, as well as to other non-BPS D-brane states such as
truncated branes.
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4.5. Linear orbifolds. We will now “test” our definition (4.9) on the class of examples
considered in Sect. 3.3. These are flat orbifolds for which there are no non-trivial cur-
vature contributions, i.e., R(W, f ) = 1. Let us specialize to the case of cyclic orbifolds
having twist group G = Zn with n ≥ d. In this case, as Zn is an abelian group, one has
Z
∨
n = Zn (setwise) and we can label the non-trivial twisted sectors of the orbifold string

theory on X by k = 1, . . . , n − 1. The untwisted sector is labelled by k = 0. We take a
generator g of Zn whose action on V ∼= C

d is given by

g ·
(

z1, . . . , zd
)
:=
(
ζ a1 z1, . . . , ζ ad zd

)
,

where ζ = exp(2π i /n) and a1, . . . , ad are integers satisfying a1 + · · ·+ad ≡ 0 mod n.6

In this case the action of any element in Zn has only one fixed point, an orbifold singu-
larity at the origin (0, . . . , 0). Hence for any g 	= e one has

Xg ∼= R
p,1

and the differential complex (4.3) of orbifold Ramond-Ramond fields is given by

�•
Zn
(X;R) = �•(X;R)⊕

(
n−1⊕

k=1

�•
(
R

p,1;R
))

.

Consider now a D-brane (W, E, f ) ∈ DZn
frac(X) with worldvolume cycle f (W ) ⊂

R
p,1 placed at the orbifold singularity, i.e., f : W → R

p,1 × (0, . . . , 0) ⊂ X . Let
the generator g act on the fibres of the Chan-Paton bundle E → W in the n-dimen-
sional regular representation γ (g)i j = ζ i δi j . The action on worldvolume fermion
fields is determined by a lift Ẑn acting on the spinor bundle S → W . Then the pairing
(4.9) contains the following terms. First of all, we have the coupling of the untwisted
Ramond-Ramond fields to W given by

∫

W
C̃ ∧ Tr

(
exp(−F E/2π i )

)
,

which is just the usual Wess-Zumino coupling and hence the Ramond-Ramond charge
of a regular (bulk) brane is 1 as expected. Then there are the contributions from the
twisted sectors, which by recalling Eq. (3.2) are given by the expression

∫

W

1

n

n−1∑

k=1

C̃k ∧ Tr
(
γ (gk) exp(−F E/2π i )

)
,

where gk is an element of Zn of order k. Since γ (gk)i i = ζ ik , the coupling in this case is
determined by a discrete Fourier transform of the fields C̃k over the group Zn . The brane
associated with the i th irreducible representation of Zn has charge ζ ik/n with respect to
the Ramond-Ramond field in the kth twisted sector. For d = 2 and d = 3 this pairing
agrees with and uniformizes the gauge field couplings computed in refs. [26 and 27],
respectively.

6 Both the requirement that the representation V be complex and the form of the G-action are physical
inputs ensuring that the closed string background X preserves a sufficient amount of supersymmetry after
orbifolding.
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4.6. An equivariant Riemann-Roch formula. Let X, W be smooth compact G-mani-
folds, and f : W → X a smooth proper G-map. If we want to make sense of the
equations of motion for the Ramond-Ramond field C , which is a quantity defined on the
spacetime X , then we need to pushforward classes defined on the brane worldvolume
W to classes defined on the spacetime. This will enable the construction of Ramond-
Ramond currents in Sect. 6 induced by the background and D-branes which appear
as source terms in the Ramond-Ramond field equations. Some technical details of the
constructions below are provided in Appendix C.

Consider first the non-equivariant case G = e. Let ν → W be the Z2-graded bun-
dle (4.10), i.e., the KO-theory class of ν is the virtual bundle [ν] = f ∗[TX ] − [TW ] ∈
KO0(W ). We assume that ν is even-dimensional and endowed with a spinc structure
(this is automatic if both X and W are spinc). Then, as reviewed in Appendix C, one can
define the Gysin homomorphism in ordinary K-theory

f K
! : K•(W ) −→ K•(X).

Using the orientations on X and W one has Poincaré duality in ordinary cohomology,
inducing a Gysin homomorphism

f H
! : H•(W ;Q) −→ H•(X;Q) ,

where here we consider the Z2-grading given by even and odd degree.
The pushforward homomorphisms in K-theory and in cohomology, under the condi-

tions stated above, are related by the Riemann-Roch theorem which states that

ch
(

f K
! (ξ)

)
= f H

!
(

ch(ξ) � Todd(ν)−1
)

(4.12)

for any class ξ in K•(W ). Here Todd(E) ∈ �even
cl (W ;C) denotes the Todd genus char-

acteristic class of a hermitian vector bundle E over W , whose Chern-Weil representative
is

Todd(E) =
√√√√det

(
F E/2π i

tanh
(
F E/2π i

)
)
,

where F E is the curvature of a hermitian connection ∇E on E . The Todd class of
the Z2-graded bundle (4.10) can be computed by using multiplicativity, naturality and
invertibility to get Todd(ν) = f ∗Todd(TX )/Todd(TW ). Thus the Chern character does
not commute with the Gysin pushforward maps, and the defect in the commutation rela-
tion is precisely the Todd genus of the bundle ν. This “twisting” by the bundle ν over the
D-brane contributes in a crucial way to the Ramond-Ramond current in the non-equi-
variant case [19,49,54].

Let us now attempt to find an equivariant version of the Riemann-Roch theorem.
As the morphism f : W → X is G-equivariant, the Z2-graded bundle ν is itself a
G-bundle with even G-action. We assume that ν is KG-oriented. This requirement is just
the Freed-Witten anomaly cancellation condition [30] in this case, generalized to global
worldsheet anomalies for D-branes represented by generic G-equivariant K-cycles. It
enables, analogously to the non-equivariant case, the construction of an equivariant
Gysin homomorphism

f KG
! : K•G(W ) −→ K•G(X). (4.13)
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We will demonstrate that, under some very special conditions, one can construct a
complex Bredon cohomology class which is analogous to the Todd genus and which
plays the role of the equivariant commutativity defect as above. Let us suppose that
the G-action has the property that for any element g ∈ G, the NG(g)-bundle νg =
ν(W ; f )g → W g is the Z2-graded bundle νg = f ∗|W g (TXg )⊕ TW g over the immersion
f |W g : W g → Xg with a ZG(g)-invariant spinc structure. Note that these are highly
non-trivial conditions, because for an arbitrary G-bundle E → X one is not even guar-
anteed in general that Eg → Xg is a vector bundle, as the dimension of the fibre may
jump from point to point. As a simple example of what can happen,7 let X = R and
G = R

+ be the group of positive reals under multiplication. Consider the G-bundle
X × V → X given by projection onto the first factor, where V is a finite-dimensional
real vector space and the G-action is

g · (x, v) = (x , gx v
)

for all g ∈ G. For any g 	= 1, (X × V )g is not a fibre bundle over Xg = X , as the
G-invariant fibre space over x = 0 is V while it is the null vector over any other point.

When G is a finite group, one can apply a construction due to Atiyah and Segal [5]. If
E is a complex G-vector bundle over X , its restriction to the fixed point subspace Xg for
any g ∈ G carries a representation of the normalizer subgroup NG(g) fibrewise. We can
thus decompose E |Xg into a Whitney sum of sub-bundles Eα = Homg(11α, E |Xg )⊗11α
over the eigenvalues α ∈ spec(g) ⊂ C for the action of g on the fibres of E |Xg , where
Homg(11α, E |Xg ) is a ZG(g)-bundle over Xg and 11α is the NG(g)-bundle Xg×Vα with
Vα the corresponding eigenspace. We define the class

φg(E) =
∑

α∈spec(g)

α [Eα] (4.14)

in the ordinary K-theory of Xg with complex coefficients. By Schur’s lemma, every ele-
ment h ∈ ZG(g) commuting with g acts as a multiple of the identity on the total space
of the bundle Eα , and so the class obtained in this way is ZG(g)-invariant. It follows
that the map (4.14) on VectCG(X) induces a homomorphism

φg : K•G(X)⊗ C −→ (
K•(Xg)⊗ C

)ZG (g)
.

By setting

φ =
⊕

[g]∈G∨
φg

we obtain a natural isomorphism leading to the splitting [5]

K•G(X)⊗ C ∼=
⊕

[g]∈G∨

(
K•(Xg)⊗ C

)ZG (g)
. (4.15)

The equivariant Chern character (4.7) provides an isomorphism componentwise
between the equivariant K-theory group (4.15) and the complex Bredon cohomology of
X .

7 We are grateful to J. Figueroa-O’Farrill for suggesting this example to us.
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Suppose now that the equivariant Thom class ThomG(ν) ∈ K•G,cpt(ν) can be decom-
posed according to the splitting (4.15) in such a way that the component in any subgroup

Thom
(
νg
) ∈

(
K•cpt(ν

g)⊗ C

)ZG (g)

coincides with the (ordinary) Thom class of the Z2-graded bundle νg → W g . Under
these conditions, the equivariant Gysin homomorphism (4.13) constructed in Appen-
dix C decomposes according to the splitting

f KG
! =

⊕

[g]∈G∨
f K
g ,

where f K
g is the K-theoretic Gysin homomorphism associated to the smooth proper map

f
∣∣
W g : W g −→ Xg.

Define the characteristic class ToddG by

ToddG(ν) :=
⊕

[g]∈G∨
Todd

(
νg
)
, (4.16)

where Todd is the ordinary Todd genus. This class defines an element of the even degree
complex Bredon cohomology of the brane worldvolume W . Under the conditions spelled
out above, we can now use the equivariant Chern character (4.7) and the usual Riemann-
Roch theorem for each pair (W g, Xg) to prove the identity

f HG
!
(

chC(ξ) �G ToddG(ν)
−1
)
= chC

(
f KG
! (ξ)

)
(4.17)

for any class ξ ∈ K•G(W ) ⊗ C, as all quantities involved in the formula (4.17) are
compatible with the G-equivariant decompositions given above.

When the geometric conditions assumed above are not met, the equivariant Todd class
in the formula (4.17) should be modified by multiplying it with another equivariant char-
acteristic class �G(W ) which reflects non-trivial geometry of the normal bundles NW g

to the embeddings W g ⊂ W . This should come from applying a suitable fixed point
theorem to the ordinary Riemann-Roch formula (4.12), but we have not found a version
which is suitable to our particular equivariant Chern character in the general case on
the category of G-spaces. When f is the collapsing map X → pt, this is the content
of the index theorem used in Sect. 4.7 below. The formula (4.17) is, however, directly
applicable on the category DG

frac(X) of fractional D-branes. When G is the cyclic group
Zn as in Sect. 4.5 above, one can apply the Thomasson-Nori fixed point theorem [53,61]
to get

�Zn (W ) =
n−1⊕

k=0

ζ k ch
(∧

−1 N∨
W gk

)
∈ H•

Zn

(
W ; C⊗ R(−)) , (4.18)

where

∧
−1 NW g =

codim(W g)∑

l=0

(−1)l
[∧l NW g

]
∈ K0 (W g

)
.
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4.7. Gravitational pairings. We will now explain how to compute the curvature con-
tributions R(W, f ) ∈ �even

G,cl(W ;C) to the Wess-Zumino functional (4.9) for the brane
geometries described in Sect. 4.6 above and for vanishing B-field. We derive the cancel-
ling form for the Ramond-Ramond gauge anomaly inflow due to chiral fermions on the
intersection worldvolume for families of branes using the usual descent procedure [35],
which is due to curvature of the spacetime manifold X itself. For this, we must explicitly
use the G-spinc structure on X . The standard mathematical intuition behind this cor-
rection is to modify the equivariant Chern character to an isometry with respect to the
natural bilinear pairings on equivariant K-theory and Bredon cohomology with complex
coefficients [49,54].

The natural sesquilinear pairing between two classes of complementary degrees in
complex Bredon cohomology, represented by closed differential forms ω, η ∈ �•G,cl

(X;C), is given by ([ω], [η])HG :=
∫ G

X ω∧G η. On the other hand, the natural quadratic
form on fractional branes defined by classes in equivariant K-theory, represented by
complex G-vector bundles E, F → X , is the topological charge

([E] , [F])KG
:= µ1

([X, E∨ ⊗ F, idX ]
)

of Eq. (3.7) in the untwisted sector corresponding to the representation γ = 1 : C[G] →
C induced from the trivial representation of G. This quantity agrees with the natural inter-
section form on boundary states computed as the G-invariant Witten index over open
string states suspended between D-branes [51], which counts the difference between the
number of positive and negative chirality Ramond ground states and hence computes
the required chiral fermion anomaly.

The two bilinear forms are related through the local index theorem which provides a
formula for Index1

([D/ X
E ]
)

in terms of integrals of characteristic forms over the various
singular strata of the orbifold [X/G]. It reads [17]

Index1

(
[D/ X

E ]
)
=
∑

[g]∈G∨

2dg

|g|
∫

Xg/ZG (g)
ch(g, E) ∧ Todd (TXg )

∧
∫
∧• NXg

STr S (�(g))√
det (1− N (g)) det

(
1− N (g) exp(−F NXg /2π i )

) ,

where dg = dim(X)−dim(Xg), |g| is the order of the element g ∈ G, and N (g) denotes
the action of g ∈ G on the fibres of the normal bundle NXg to Xg in X . The determi-
nant is taken over the normal bundle NXg for each g ∈ G, implemented by a Berezin-
Grassmann integration over the exterior algebra bundle

∧• NXg . The form�(g), regarded
as an element of

∧• NXg under the symbol map, is the action of g on the fibres of the
spinor bundle S|Xg , and STr S is the supertrace over the endomorphism bundle of S.

This formula can be thought of as an equivariant localization of the usual Atiyah-
Singer index density onto the submanifolds Xg ⊂ X of fixed points of the G-action on
X , with the determinants reflecting the “Euler class” contributions from the non-trivial
normal bundles to Xg . This is the anticipated physical result arising from the closed
string twisted Witten index, computed as the partition function on the cylinder with the
twisted boundary conditions (4.2). Supersymmetry localizes the computation onto zero
modes of the string fields which are constant maps to the submanifolds Xh ⊂ X , while
modular invariance requires a (weighted) sum over all twisted sectors. The index can be
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rewritten using the equivariant characteristic classes defined as in Eqs. (4.6) and (4.16)
to get

Index1

(
[D/ X

E ]
)
=
∫ G

X
chC(E) ∧G ToddG(TX ) ∧G �G(X), (4.19)

where we have used (TX )
g = TXg and the element of �•G,cl(X;C) given by

�G(X) :=
⊕

[g]∈G∨

|g|
2dg |G∨ |

×
∫
∧• NXg

STr S (�(g))√
det (1− N (g)) det

(
1− N (g) exp(−F NXg /2π i )

) (4.20)

defines a characteristic class in the complex Bredon cohomology of X . Note that the inte-
grands of Eq. (4.20) are formally similar to the Chern characters of the virtual bundles
(4.18) above.

By using multiplicativity of the equivariant Chern character (4.6) to write

chC
(
E∨ ⊗ F

) = chC(E) ∧G chC(F) ,

it follows from Eq. (4.19) that the map (4.7) can be turned into an isometry by “twisting”
it with the closed differential form

√
ToddG(TX ) ∧G �G(X), which when pulled back

along f : W → X gives the required anomaly cancelling form on the brane worl-
dvolume. This should then be combined with the correction ToddG(ν)

−1 contributed
by the Z2-graded bundle (4.10) to the Riemann-Roch formula (4.17). Then under the
various conditions spelled out in Sect. 4.6 above, the required map R in Eq. (4.9) from
G-spinc bordism classes [(W, f )] to �even

G,cl(W ;C) is given by

R(W, f ) = f ∗
√

ToddG(TX ) ∧G �G(X)

ToddG(ν)
= ToddG(TW ) ∧G f ∗

√
�G(X)

ToddG(TX )
.

(4.21)

The main new ingredient in this formula is the contribution from the fixed point sub-
manifolds Xg ⊂ X , particularly their normal bundle characteristic classes (4.20). This
corrects previous topologically trivial, flat space formulas, even for G-fixed worldvo-
lumes W (see ref. [34] for example). Note that when the G-action on X is trivial, one
has ToddG(TX ) = Todd(TX ) and �G(X) is constant.

5. Orbifold Differential K-Theory

The main drawback of the delocalized theory of the previous section is that it cannot
incorporate the interesting effects of torsion, which have been one of the driving forces
behind the K-theory description of D-branes and Ramond-Ramond fluxes, and as such
it is desirable to have a description which utilizes the full R(G)-module K•G(X). In this
section we will develop an extension of differential K-theory as defined in ref. [37] to
incorporate the case of a G-manifold. These are the groups needed to extend the analysis
of the previous section to topologically non-trivial, real-valued Ramond-Ramond fields.
While we do not have a formal proof that this is a proper definition of an equivariant
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differential cohomology theory, we will see that it matches exactly with expectations
from string theory on orbifolds and also has the correct limiting properties. For this
reason we dub the theory that we define ‘orbifold’ differential K-theory, deferring the
terminology ‘equivariant’ to a more thorough treatment of our model (we discuss this in
more detail in Sect. 5.4 below). In the following we will spell out the definition of differ-
ential K-theory groups. The crux of the extensions of these definitions to the equivariant
setting will be explicit constructions of the exact sequences they are described by, which
are important for physical considerations. We will determine concrete realizations of
the various morphisms involved, which are given in a general but abstract framework
in ref. [37].8 See refs. [28,32] for an introduction to differential cohomology theories
and their applications in physics.

5.1. Differential cohomology theories. Differential K-theory of a manifold is an enrich-
ment of its K-theory, which encodes global topological information, with local geometric
information contained in the de Rham complex. Consider a (generalized) cohomology
theory E• defined on the category of smooth manifolds X along with a canonical map

ϕ : E•(X) −→ H(X;R⊗ π−•E)• (5.1)

which induces an isomorphism

E•(X)⊗ R ∼= H(X;R⊗ π−•E)• ,

i.e., the image of ϕ is a full lattice and its kernel is the torsion subgroup of E•(X).
Then one can define differential E-theory as the cohomology theory Ě• which lifts E•
via the pullback square

Ě•(−) ��

��

�cl(−;R⊗ π−•E)•

��
E•(−)

ϕ
�� H(−;R⊗ π−•E)•

, (5.2)

where �cl(X;R⊗π−•E)q denotes the real vector space of closed E•(pt;R)-valued dif-
ferential forms ω on X of total degree q, and the right vertical map in the commutative
diagram (5.2) is given by sending ω to its de Rham cohomology class [ω]dR. A class in
Ěq(X) is given by a pair (ξ, ω), with ξ ∈ Eq(X) such that

ϕ(ξ) = [ω]dR , (5.3)

together with an isomorphism that realizes the equality (5.3) explicitly in H(X;R ⊗
π−•E)q .

In their foundational paper [37] Hopkins and Singer define the differential E-theory
associated to any generalized cohomology theory E•, and prove its naturality and homot-
opy properties. This is done by generalizing the concept of function space in algebraic
topology, which can be used to define the cohomology of a space, to that of differential
function space, where here the term “differential” typically means something different

8 An explicit proof of these exact sequences has been given recently in ref. [18] using the geometric
description of differential K-cocyles in terms of bundles with connection. Our proof is more general, but less
geometric, as it exploits the realization in terms of maps to classifying spaces.
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from differentiable or smooth. Because of this, the differential E-groups are defined in an
abstract way and are difficult to realize explicitly. An explicit construction for differen-
tial K-theory is given in ref. [37]. In the following we will go through this construction in
some detail. This will be our starting point to give a definition of the differential coho-
mology theory associated to equivariant K-theory K•G , which will reduce to ordinary
differential K-theory in the case where the group G is the trivial group. The validity of
our definition will be confirmed by explicit construction of the exact sequences, that will
also be important in our later physical applications.

5.2. Differential K-theory. Throughout X will denote a smooth manifold. Let Fred be
the algebra of Fredholm operators on a separable Hilbert space. Recall that Fred is a
classifying space for complex K-theory through the isomorphism

[X,Fred] Index(−)−−−−−→ K0(X)

which associates to any map f : X → Fred the index bundle of f in K0(X). Let

u ∈ Z even(Fred;R)

be a cocycle of even degree which represents the Chern character of the universal bundle.
Then for any map f : X → Fred representing a complex vector bundle E → X , the
pullback f ∗u is a representative of ch(E) in Heven(X;R).

The differential K-theory group Ǩ0(X) is defined to be the set of triples (c, h, ω),
where c : X → Fred, ω is a closed differential form in �even

cl (X;R), and h is a cochain
in Ceven−1(X;R) satisfying

δh = ω − c∗u. (5.4)

The cochain h in Eq. (5.4) is precisely the isomorphism refered to in Sect. 5.1 above,
which is invisible in the cohomology groups, and in this equation the closed differential
form ω is regarded as a cochain under the de Rham map ω �→ ∫

(−) ω. Two triples
(c0, h0, ω0) and (c1, h1, ω1) are equivalent if there exists a triple (c, h, ω) on X×[0, 1],
with ω = ω(t) constant along t ∈ [0, 1], such that

(c, h, ω)
∣∣
t=0 = = (c0, h0, ω0) and (c, h, ω)

∣∣
t=1 = = (c1, h1, ω1). (5.5)

The equivalence (5.5) can be rephrased [28] by requiring that there exists a map

F : X × [0, 1] −→ Fred

and a differential form σ ∈ �even−2(X;R) such that

F
∣∣
t=0 = c0,

F
∣∣
t=1 = c1,

ω1 = ω0,

h1 = h0 + π∗ F∗u + dσ,

(5.6)

where π : X × [0, 1] → X is the natural projection. The relations (5.6) say that c0
and c1 are homotopic maps, hence they represent the same class in K0(X), and that the
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cochains h0 and h1 are related by the homotopy that connects the maps c0 and c1. We
also see that the closed form ω completely characterizes the triple (c, h, ω).

Borrowing terminology used in representing classes in the differential cohomology
Ȟ2(X) as principal U(1)-bundles with connection, the class [c] ∈ K0(X) is called
the characteristic class, the closed differential form ω is called the curvature, while the
cochain h is called the holonomy of the triple. From the defining property of the universal
cocycle u and Eq. (5.4) it follows that

ch ([c]) = [ω]dR.

Thus the cohomology class represented by the curvature ω lies in the image of the (real)
Chern character, which is a lattice of maximal rank inside the cohomology group with
real coefficients.

Let us now define the differential K-theory group Ǩ−1(X). Recall that the classifiying
space for K−1 is the based loop space �Fred. Thus we need a cocycle

u−1 ∈ Zodd(�Fred;R)

which represents the universal odd Chern character. Consider the evaluation map

ev : �Fred × S
1 −→ Fred.

Then the cocycle u−1 is defined by

u−1 = �∗ ev∗u,

where � : �Fred × S
1 → �Fred is the natural projection. In fact, u−1 can be defined

as the slant product of ev∗u with the fundamental class of the circle S
1, i.e., by integrat-

ing the cocycle ev∗u along S
1. As above, a class in Ǩ−1(X) is represented by a triple

(c, h, ω), where c : X → �Fred, ω is a closed differential form in �even−1
cl (X;R), and

h is a cocycle in Ceven−2(X;R) satisfying

δh = ω − c∗u−1.

Two triples (c0, h0, ω0) and (c1, h1, ω1) are equivalent if a relation like that in Eq. (5.5)
holds.

In an analogous way one can define the higher differential K-theory groups Ǩ−n(X)

for any positive integer n. One can prove that Bott periodicity in complex K-theory
induces a periodicity in differential K-theory given by

Ǩ−n(X) ∼= Ǩ−n−2(X).

This periodicity enables one to define the higher differential K-theory groups in positive
degrees. The group composition law on Ǩ−n(X) is given by

(c1, h1, ω1) + (c2, h2, ω2) := (c1 · c2, h1 + h2, ω1 + ω2),

where the dot denotes pointwise multiplication. The identity element is given by the tri-
ple ( c , 0, 0), where throughout c denotes any map which is homotopic to the (constant)
identity map. To allow for the presence of the characteristic class ω in the definition, the
abelian groups Ǩ−n(X) are generally infinite-dimensional. The definition of Ǩ−n(X)
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depends, up to homotopy type and cohomology class, on the choice of classifying space
and of universal cocycle u [37].

A key property is the exact sequences which characterize the differential K-theory
groups Ǩ−n(X) for any n ∈ Z as extensions of topological K-theory by certain groups
of differential forms. In each case the differential K-theory group Ǩ•(X) is an extension
of the setwise fibre product

A•K(X) = {(ξ, ω) ∈ K•(X)×�cl(X;R⊗ π−•K)•
∣∣ ch(ξ) = [ω]dR

}

by the torus of topologically trivial flat fields given by

0 −→ K•−1(X)⊗ R/Z −→ Ǩ•(X) −→ A•K(X) −→ 0. (5.7)

This will be useful below when we define equivariant differential K-theory.
As in the case of topological K-theory, there are geometrical realizations of the groups

Ǩ−n(X) [28]. In particular, a class in Ǩ0(X) can be represented by a complex vector
bundle E → X equipped with a connection ∇E . To the pair (E,∇E ) we can associ-
ate the triple ( f, η, ω), where f : X → BU is a map which classifies the bundle E ,
ω = ch(∇E ) is a Chern-Weil representative of the Chern character of [E], and η is a
Chern-Simons form such that dη = f ∗ωBU −ω with ωBU = ch(∇BU ) the Chern char-
acter form of the universal bundle EBU → BU with respect to the universal connection
∇BU on EBU .

In the following we will define abelian groups that can be thought of as a natural
generalization of the differential K-theory of a manifold X acted upon by a (finite)
group G. In this case one cannot employ the powerful machinery developed in ref. [37],
as the equivariant K-theory K•G(X) is not a cohomology theory defined on the cate-
gory of manifolds. Instead, we will take as our starting point the explicit definition of
the groups Ǩ−n(X) given above, and naturally generalize it to groups Ǩ−n

G (X) which
accommodate the action of the group G in such a way that when G = e is trivial, one
has Ǩ−n

G (X) ∼= Ǩ−n(X).

5.3. Orbifold differential forms. We want to generalize the commutative diagram (5.2)
to the case in which our underlying cohomology theory E•(X) is the equivariant
K-theory K•G(X). We first need a homomorphism ϕ from equivariant K-theory to a
target cohomology theory which induces an isomorphism when tensored over the reals.
For this, we will use the Chern character constructed in Sect. 2.4 with the target cohomol-
ogy theory given by Bredon cohomology. Then we need a refinement of this cohomology
which reduces to the de Rham complex when the group G is trivial. This complex may
be thought of as the complex of differential forms on the orbifold X/G. For this pur-
pose, we will use the differential complex (�•G(X;R), dG) defined in Sect. 4.1. Using
the delocalization formula (4.5) one shows that this complex is a refinement for Bredon
cohomology with real coefficients, in the case when G is a finite group. It comes equipped
with a natural product defined in Eq. (4.8). As a refinement for Bredon cohomology, the
complex �•G(X;R) gives a well-defined map

ω �−→ [ω]G−dR ∈ H
(
�•G(X;R) , dG

) ∼= H•G
(
X ; R⊗ R(−))

and reduces to the usual de Rham complex of differential forms in the case G = e.
There is an alternative complex one could construct which is “manifestly” equivari-

ant, in the sense that its functoriality property over the category of groups is transparent.
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It can also be generalized to the case in which G is an infinite discrete group. However,
it is not evident how to define a ring structure on this complex, and its physical relation
to Ramond-Ramond fields is not clear. We include its definition here for completeness.9

See Appendix A and ref. [23] for the relevant definitions concerning modules over a
functor category and their tensor products.

Starting from the real representation ring functor R(−) = R⊗ R(−) over the orbit
category Or(G), there is a natural map of real vector spaces

R(−)⊗ROr(G) C•(X;R) −→ HomROr(G)

(
C •(X;R) , R(−)), (5.8)

where C•(X;R) is the left ROr(G)-module obtained by dualizing the functor

C •(X;R) := R⊗ C •(X)

defined in Sect. 2.2. Note that both C •(X;R) and R(−), being contravariant functors,
are right ROr(G)-modules. The map (5.8) is given on decomposable elements as

λ⊗ f �−→ (σ �→ f (σ )∗(λ))

and it is an isomorphism of real vector spaces.10

Define the differential complex

�•G
(
X ; R⊗ R(−)) := R(−)⊗ROr(G) �

•(X;R),

where�•(X;R) is the functor Or(G)→ Ab given by�•(X;R) : G/H �→ �•(X H ;R),
and with derivation dorb induced by the exterior derivative d. Since the de Rham map
induces a chain homotopy equivalence of left ROr(G)-complexes C•(X;R) → �•
(X;R), there is a G-equivariant chain homotopy equivalence

R(−)⊗ROr(G) C•(X;R) −→ R(−)⊗ROr(G) �
•(X;R).

Combined with the isomorphism (5.8) we can thus conclude

H•G
(
X ; R⊗ R(−)) ∼= H

(
�•G(X;R⊗ R(−)) , dorb

)
.

If one chooses to work with this complex, then the construction of orbifold differential
K-theory groups given in Sect. 5.4 below can be carried through in exactly the same
way. But since the two complexes �•G(X;R) and �•G(X;R ⊗ R(−)) are in general
not isomorphic, the two differential cohomology theories obtained will be generically
distinct.

5.4. Orbifold differential K-groups. Having sorted out all the ingredients necessary to
make sense of a generalization of the diagram (5.2), we will now define the differential
equivariant K-theory groups Ǩ−n

G (X). First, let us recall some further basic facts about
equivariant K-theory. Similarly to ordinary K-theory, a model for the classifying space
of the functor K0

G is given by the G-algebra of Fredholm operators FredG acting on a
separable Hilbert space which is a representation space for G in which each irreducible
representation occurs with infinite multiplicity [3]. Then there is an isomorphism

K0
G(X) ∼= [X,FredG]G ,

9 We are grateful to W. Lück for suggesting this construction to us.
10 In general, to have an isomorphism one has to require the G-manifold X to be cocompact and proper.
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where [−,−]G denotes the set of equivalence classes of G-homotopic maps, and the
isomorphism is given by taking the index bundle.

There is also a universal space VectnG , equipped with a universal G-bundle Ẽn
G ,

such that
[
X,VectnG

]
G corresponds to the set of isomorphism classes of n-dimensional

G-vector bundles over X [46]. These spaces are constructed as follows. Let EG be the
category whose objects are the elements of G and with exactly one morphism between
each pair of objects. The geometric realization (or nerve) of the set of isomorphism clas-
ses in EG is, as a simplicial space, the total space of the classifying principal G-bundle
EG. With Vectn(pt) the category of n-dimensional complex vector spaces V ∼= C

n , the
universal space VectnG is defined to be the geometric realization of the functor category
[EG,Vectn(pt)] (see Appendix A). The universal n-dimensional G-vector bundle Ẽn

G
is then defined as

Ẽn
G = Ṽectn

G ×GL(n,C) C
n −→ Vectn

G , (5.9)

where Ṽectn
G is the geometric realization of the functor category defined as above but

with Vectn(pt) replaced with the category consisting of objects V in Vectn(pt) together
with an oriented basis of V .

We assume sufficient regularity conditions on the infinite-dimensional spaces FredG
and Ẽn

G . Since FredG and the group completion �BVectG are both classifying spaces
for equivariant K-theory, they are G-homotopic and we can thereby choose a cocycle

uG ∈ Z even
G (FredG;R)

representing the equivariant Chern character of the universal G-bundle (5.9). Generally,
the group Z even

G (X;R) is the subgroup of closed cocycles in the complex

Ceven
G (X;R) :=

⊕

[g]∈G∨
Ceven (Xg ; R

)ZG (g) (5.10)

which, by the results of Sect. 4.2, is a cochain model for the Bredon cohomology group
Heven−1

G (X;R⊗ R(−)). The equivariant Chern character is understood to be composed
with the delocalizing isomorphism of Sect. 4.2. Since it is a natural homomorphism, for
any G-bundle E → X classified by a G-map f : X → FredG one has

chX ([E]) = [ f ∗uG
]
.

Definition 5.1. The orbifold differential K-theory Ǩ0
G(X) of the (global) orbifold

[X/G] is the group of triples (c, h, ω), where c : X → FredG is a G-map, ω is an
element in �even

G,cl(X;R), and h is an element in Ceven−1
G (X;R) satisfying

δh = ω − c∗uG . (5.11)

Two triples (c0, h0, ω0) and (c1, h1, ω1) are said to be equivalent if there exists a triple
(c, h, ω) on X × [0, 1], with the group G acting trivially on the interval [0, 1] and with
ω constant along [0, 1], such that

(c, h, ω)
∣∣
t=0 = = (c0, h0, ω0) and (c, h, ω)

∣∣
t=1 = = (c1, h1, ω1).
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In Eq. (5.11) the closed orbifold differential formω is regarded as an orbifold cochain
in the complex (5.10) by applying the de Rham map componentwise on the fixed point
submanifolds Xg , g ∈ G. The higher orbifold differential K-theory groups Ǩ−n

G (X) are
defined analogously to those of Sect. 5.2 above. To confirm that this is an appropriate
extension of the ordinary differential K-theory of X , we should show that the orbifold
differential K-theory groups fit into exact sequences which reduce to those given by
Eq. (5.7) when G is taken to be the trivial group. For this, we define the group

A0
KG

(X) :=
{
(ξ, ω) ∈ K0

G(X)×�even
G,cl(X;R)

∣∣ chX (ξ) = [ω]G−dR

}
.

Theorem 5.2. The orbifold differential K-theory group Ǩ0
G(X) satisfies the exact

sequence

0 −→ Heven−1
G

(
X ; R⊗ R(−))

chX

(
K−1

G (X)
) −→ Ǩ0

G(X) −→ A0
KG

(X) −→ 0. (5.12)

Proof. Consider the subgroup of Heven−1
G (X;R ⊗ R(−)) defined as the image of the

equivariant K-theory group K−1
G (X) under the Chern character chX . It consists of Bredon

cohomology classes of the form [c̃∗u−1
G ], where c̃ : X → �FredG . There is a surjective

map

f : Ǩ0
G(X) −→ A0

KG
(X),

[(c, h, ω)] �−→ ([c] , ω) ,
which is a well-defined homomorphism, i.e., it does not depend on the chosen represen-
tative of the orbifold differential K-theory class. By definition, the kernel of f consists
of triples of the form ( c , h, 0). We also define the map

g : Heven−1
G

(
X ; R⊗ R(−)) −→ Ǩ0

G(X)

[h] �−→ [( c , h, 0)
]
,

which is a well-defined homomorphism because the class
[
( c , h, 0)

]
depends only on

the Bredon cohomology class [h] ∈ Heven−1
G (X;R⊗ R(−)). Then by construction one

has im(g) = ker( f ).
The homomorphism g is not injective. To determine the kernel of g, we use the fact

that the zero element in Ǩ0
G(X) can be represented as

[
( c , 0, 0)

] = [( c , π∗ F∗uG + dGσ, 0)
]

with F : X × S
1 → FredG and σ ∈ �even−2

G (X;R) (see Eq. (5.6)). To the map F we
can associate a map c̃ : X → �FredG such that F = ev ◦ (c̃× idS1). This follows from
the isomorphism

K−1
G (X) ∼= ker

(
i∗ : K0

G(X × S
1)→ K0

G(X)
)
,

where i is the inclusion i : X ↪→ X × pt ⊂ X × S
1. Now use the fact that at the level

of (real) Bredon cohomology one has an equality

π∗
(
c̃ × idS1

)∗ = c̃∗�∗,
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since the projection homomorphisms π∗ and �∗ both correspond to integration (slant
product) along the S

1 fibre. Then one has the identity
[
π∗ F∗uG

] = = [π∗ (c̃ × idS1)∗ ev∗uG
] = = [c̃∗�∗ ev∗uG

] = =
[
c̃∗u−1

G

]
.

It follows that ker(g) is exactly the group chX (K
−1
G (X)), and putting everything

together we arrive at Eq. (5.12).

The torus Heven−1
G

(
X;R⊗ R(−)) /chX

(
K−1

G (X)
) ∼= K−1

G (X)⊗ R/Z is called the

group of topologically trivial flat fields (or of “orbifold Wilson lines”). We can rewrite
the sequence (5.12) in various illuminating ways. Consider the characteristic class map

fcc : Ǩ0
G(X) −→ K0

G(X)

[(c, h, ω)] �−→ [c]

and the map

gcc : �even−1
G (X;R) −→ Ǩ0

G(X)

h �−→ [( c , h, dGh)
]
.

Let �even−1
KG

(X;R) be the subgroup of elements in �even−1
G,cl (X;R) whose Bredon

cohomology class lies in chX (K
−1
G (X)). Then by using arguments similar to those used

in arriving at the sequence (5.12), one finds the

Corollary 5.3 (Characteristic class exact sequence). The orbifold differential K-the-
ory group Ǩ0

G(X) satisfies the exact sequence

0 −→ �even−1
G (X;R)

�even−1
KG

(X;R)
−→ Ǩ0

G(X) −→ K0
G(X) −→ 0. (5.13)

The quotient space of orbifold differential forms in the exact sequence (5.13) is called
the group of topologically trivial fields. An element of this group is a globally defined
(and hence topologically trivial) gauge potential on the orbifold X/G up to large (quan-
tized) gauge transformations, with ω the corresponding field strength. Finally, consider
the field strength map

ffs : Ǩ0
G(X) −→ �even

G,cl(X;R)

[(c, h, ω)] �−→ ω. (5.14)

The kernel of the homomorphism ffs is the group which classifies the flat fields (which
are not necessarily topologically trivial) and is denoted K−1

G (X;R/Z). This group will
be described in more detail in the next section, where we shall also conjecture an essen-
tially purely algebraic definition of K−1

G (X;R/Z) which explains the notation. In any
case, we have the

Corollary 5.4 (Field strength exact sequence). The orbifold differential K-theory group
Ǩ0

G(X) satisfies the exact sequence

0 −→ K−1
G (X;R/Z) −→ Ǩ0

G(X) −→ �even
KG

(X;R) −→ 0. (5.15)
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Higher orbifold differential K-theory groups satisfy analogous exact sequences, with
the appropriate degree shifts throughout. It is clear from our definition that one recovers
the ordinary differential K-theory groups in the case of the trivial group G = e, and in
this sense our orbifold differential K-theory may be regarded as its equivariant gener-
alization. At this point we hasten to add that, although our groups are well-defined and
satisfy desired properties which are useful for physical applications such as functoriality
and the various exact sequences above, we have not proven that our orbifold theory is
a differential cohomology theory. We have also not given a definition of what a generic
orbifold (or equivariant) differential cohomology theory is. For instance, it would be
interesting to define a ring structure and an integration on Ǩ•G(X). In particular, the
integration requires knowledge of a relative version of orbifold differential K-theory,
which we have not developed in this paper.

We have also investigated the possibility that the group Ǩ•G(X) reduces to the ordinary
differential K-theory Ǩ•(X/G) in the case of a free G-action on X , and to Ǩ•(X)⊗R(G)

in the case of a trivial group action, as one might naively expect from the analogous
results for equivariant topological K-theory (the equivariant excision theorem (1.4) with
N = G and Eq. (3.4), respectively) and for Bredon cohomology (Examples 2.2 and 2.3,
respectively). On the contrary, these decompositions do not occur, because the corre-
sponding isomorphisms in equivariant K-theory are estabilished via the induction maps
and these usually do not lift at the “cochain level” as isomorphisms. Properties such
as induction structures reflect homotopy invariance of topological cohomology groups,
which is not possessed by differential cohomology groups due to their “local” depen-
dence on the complex of differential forms. We will see an explicit example of this in the
next section. With this in mind, it would be interesting then to define a suitable analog of
the induction structures in an equivariant cohomology theory. These and various other
interesting mathematical issues surrounding the orbifold differential K-theory groups
that we have defined will not be pursued in this paper.

6. Flux Quantization of Orbifold Ramond-Ramond Fields

In this final section we will argue that the orbifold differential K-theory defined in the
previous section can be used to describe Ramond-Ramond fields and their flux quan-
tization condition in orbifolds of Type II superstring theory with vanishing H -flux.
To formulate the self-duality property of orbifold Ramond-Ramond fields in equivari-
ant K-theory, one needs an appropriate equivariant version of Pontrjagin duality [32].
This appears to be a very deep and complicated problem, and is beyond the scope of
the present paper. Furthermore, to generalize the pairing of Sect. 4.4 to topologically
non-trivial Ramond-Ramond fields, one needs to define an integration on the orbifold
differential cohomology theory defined in Sect. 5.4, and regard the Ramond-Ramond
fields properly as cocycles for it. In addition, one needs a graded ring structure and an
appropriate groupoid representing the orbifold differential K-theory, whose objects are
the Ramond-Ramond form gauge potentials C and whose isomorphism classes are the
gauge equivalence classes in Ǩ•G(X). Lacking these ingredients, most of our analysis in
this section will be essentially purely “topological”. We shall study the somewhat sim-
pler problem of the proper K-theory quantization of orbifold Ramond-Ramond fields,
in particular due to their sourcing by fractional D-branes, in terms of the formulation
provided by orbifold differential K-theory.
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6.1. Ramond-Ramond currents. We will begin by rephrasing the relation between the
D-brane charge group and the group of Ramond-Ramond fluxes “measured at infin-
ity” in the equivariant case, which is a statement about the K-theoretic classification of
Ramond-Ramond fields on a global orbifold [X/G]. For this, we invoke an argument due
to Moore and Witten [52] which will suggest that the equivariant Chern character chX
constructed in Sect. 2 gives the right quantization rule for orbifold Ramond-Ramond
fields. Suppose that our spacetime X is a non-compact G-manifold. Suppose further
that there are D-branes present in Type II superstring theory on X/G. Their Ramond-
Ramond charges are classified by the equivariant K-theory Ki

G,cpt(X) with compact
support, where i = 0 in Type IIB theory and i = −1 in Type IIA theory.

We require that the brane be a source for the equation of motion for the total
Ramond-Ramond field strength ω. This means that it creates a Ramond-Ramond cur-
rent J . If we require that the worldvolume W be compact in equivariant K-cycles
(W, E, f ) ∈ DG(X), then J is supported in the interior X̊ of X . Let X∞ be the
“boundary of X at infinity”, which we assume is preserved by the action of G. Then
K•G,cpt(X) ∼= K•G(X, X∞). Since J is trivialized by ω in X̊ , the D-brane charge lives in
the kernel of the natural forgetful homomorphism

f• : K•G,cpt(X) −→ K•G(X) (6.1)

induced by the inclusion (X,∅) ↪→ (X, X∞). We denote by i : X∞ ↪→ X the canonical
inclusion.

The long exact sequence for the pair (X, X∞) in equivariant K-theory truncates, by
Bott periodicity, to the six-term exact sequence

K−1
G (X∞) �� K0

G(X, X∞)
f0

�� K0
G(X)

i∗
��

K−1
G (X)

i∗
��

K−1
G (X, X∞)

f−1
�� K0

G(X∞).��

It follows that the charge groups are given by

ker
(
f0
) ∼= K−1

G (X∞)

i∗
(

K−1
G (X)

) and ker
(
f−1
) ∼= K0

G(X∞)

i∗
(
K0

G(X)
) .

This formula means that the group of Type IIB (resp. Type IIA) brane charges is mea-
sured by the group K−1

G (X∞) (resp. K0
G(X∞)) of “orbifold Ramond-Ramond fluxes

at infinity” which cannot be extended to all of spacetime X . We may then interpret,
for arbitrary spacetimes X , the group K−1

G (X) (resp. K0
G(X)) as the group classifying

Ramond-Ramond fields in the orbifold X/G which are not sourced by branes in Type
IIB (resp. Type IIA) string theory.

The Ramond-Ramond current can be described explicitly in the delocalized the-
ory of Sect. 4. The Wess-Zumino pairing (4.9) between a topologically trivial, com-
plex Ramond-Ramond potential and a D-brane represented by an equivariant K-cycle
(W, E, f ) ∈ DG(X) contributes a source term to the Ramond-Ramond equations of
motion, which is the class

[Q(W, E, f )] ∈ Heven
G

(
X ; C⊗ R(−))
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represented by the pushforward

Q(W, E, f ) = f HG
!
(

chC(E) ∧G R(W, f )
)
.

We now use the Riemann-Roch formula (4.17) and the fact that f ∗ is right adjoint to
f HG
! , i.e., f HG

! ◦ f ∗ = idH•G (X;C(−)). Using the explicit expression for the curvature
form in Eq. (4.21), we can then rewrite this class as

Q(W, E, f ) = chC
(

f KG
! (E)

)
∧G

√
ToddG(TX ) ∧G �G(X). (6.2)

This is the complex Bredon cohomology class of the Ramond-Ramond current J cre-
ated by the D-brane (W, E, f ). In the case G = e, the expression (6.2) reduces to the
standard class of the current for Ramond-Ramond fields in Type II superstring theory
on X [19,49,52,54].

There is a natural extension of the current (6.2) which allows us to formally conclude,
in analogy with the non-equivariant case, that the complex Bredon cohomology class
associated to a class ξ ∈ K•G(X)⊗ C representing a Ramond-Ramond field is assigned
by the equivariant Chern character. If the Ramond-Ramond field is determined by a
differential form C/2π

√
ToddG(TX ) ∧G �G(X) with C ∈ �•G(X;C) and dGC = ω,

then this is the class [ω(ξ)] in H•G(X;C⊗ R(−)) represented by the closed differential
form

ω(ξ)

2π
√

ToddG(TX ) ∧G �G(X)
= chC(ξ). (6.3)

This is just the anticipated flux quantization condition from orbifold differential
K-theory. The appearance of the additional gravitational terms in Eq. (6.3) is inconse-
quential to this identification. Given the canonical map (5.1) in a generalized cohomology
theory E•, any other map E•(X)→H(X;R⊗ π−•E)•with the same properties described
in Sect. 5.1 is obtained by multiplying ϕ with an invertible element in H(X;R⊗π−•E)0.
In the case at hand, the characteristic class

√
ToddG(TX ) ∧G �G(X) is an invertible

closed differential form which represents this element in Heven
G (X;C⊗R(−)). This class

reduces to the usual gravitational correction
√

Todd(TX ) when G acts trivially on X .
We should stress that this analysis of the delocalized theory assumes the strong con-

ditions spelled out in Sect. 4.7, which require a deep geometrical compatibility of the
equivariant K-cycle (W, E, f ) with the orbifold structure of [X/G] (or else an explicit
determination of the unknown characteristic class�G(W ) correcting the Riemann-Roch
formula as explained in Sect. 4.6). The example of the linear orbifolds considered in
Sects. 3.3 and 4.5, and in Section 6.2 below, is simple enough to satisfy these conditions.
It would be very interesting to find a geometrically non-trivial explicit example to test
these requirements on. In any case, the results above suggest that the orbifold differential
K-theory (or more precisely a complex version of it) defined in the previous section is
the natural framework in which to describe topologically non-trivial Ramond-Ramond
fields on orbifolds. It would be highly desirable to determine the correct generalization
of Eq. (6.2) to the orbifold differential K-theory group Ǩ•G(X) of the previous section,
and thereby extending the delocalized Ramond-Ramond currents to include effects such
as torsion.
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6.2. Linear orbifolds. To understand certain aspects of the orbifold differential K-theory
groups, it is instructive to study the K-theory classification of Ramond-Ramond fields
on the linear orbifolds considered in Sects. 3.3 and 4.5. Since the C-linear G-module
V is equivariantly contractible, one has Hodd

G (V ;R⊗ R(−)) = 0 and K0
G(V ) = R(G).

From Theorem 5.2 it then follows that

Ǩ0
G(V ) ∼= A0

KG
(X) ∼= {(γ, ω) ∈ R(G)×�even

G,cl(V ;R)
∣∣ chG/G(γ ) = [ω]G−dR

}
.

Since the equivariant Chern character chG/H : R(H)→ R(H) for H ≤ G is the identity
map, the setwise fibre product truncates to the lattice of quantized orbifold differential
forms and one has

Ǩ0
G(V ) = �even

KG
(V ;R). (6.4)

This is the group of Type IIA Ramond-Ramond form potentials on V . It naturally con-
tains those fields which trivialize the Ramond-Ramond currents sourced by the stable
fractional D0-branes of the Type IIA theory, corresponding to characteristic classes [c]
in the representation ring R(G) as explained in Sect. 3.3.

This can be explicitly described as an extension of the group of topologically trivial
Ramond-Ramond fields C of odd degree by the equivariant K-theory of V , as implied
by Corollary 5.3. Since V is connected and G-contractible, one has �0

G,cl(V ;R) =
R⊗ R(G) and the group (6.4) has a natural splitting

Ǩ0
G(V ) = R(G)⊕

(
d⊕

k=1

�2k
G,cl(V ;R)

)
. (6.5)

Any closed orbifold form ω on V of positive degree is exact, ω = dGC , with the gauge
invariance C �→ C + dGξ . It follows that there is a natural map

d⊕

k=1

�2k
G,cl(V ;R) −→ �odd

G (V ;R)

�odd
KG

(V ;R)

which associates to the field strength ω the corresponding globally well-defined
Ramond-Ramond potential C .

On the other hand, the orbifold differential K-theory group Ǩ−1
G (V ) of Type IIB

Ramond-Ramond fields on V can be computed by using the characteristic class exact
sequence (5.13) with degree shifted by −1. Using K−1

G (V ) = 0, one finds

Ǩ−1
G (V ) = �even

G (V ;R)

�even
KG

(V ;R)
. (6.6)

This result reflects the fact that the Type IIB theory has no stable fractional D0-branes.
Hence there is no extension and the Ramond-Ramond fields are induced solely by the
closed string background. Their field strengths ω = dGC are determined entirely by the
potentials C , which are globally defined differential forms of even degree.

Note that for any G-homogeneous space G/H one has K−1
G (G/H) = 0 and

�odd
G (G/H ;R) = 0.
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From the characteristic class exact sequence (5.13) one thus computes that the orbifold
differential K-theory group

Ǩ0
G(G/H) ∼= K0

G(G/H) ∼= R(H) (6.7)

is given by the characteristic classes (of fractional D0-branes), while Theorem 5.2 (with
degree shifted by −1) implies that the orbifold differential K-theory group

Ǩ−1
G (G/H) ∼= Heven

G

(
G/H ; R⊗ R(−))

chG/H
(
K0

G(G/H)
) ∼= R(H)⊗ R/Z (6.8)

is given by the topologically trivial flat fields. Setting H = G in Eqs. (6.7) and (6.8)
shows that the differential KG -theory groups of a point generically differ from the groups
(6.4) and (6.6), even though V is G-contractible. This exemplifies the G-homotopy
non-invariance of the orbifold differential K-theory groups, required to capture the non-
vanishing (but topologically trivial) gauge potentials on V .

6.3. Flat potentials. In Sect. 6.2 above we encountered some examples of topologically
trivial Ramond-Ramond fields, corresponding to gauge equivalence classes with trivial
K-theory flux [c] = 0. They are the globally defined orbifold differential forms

C ∈ �•G(X;R)

with the gauge symmetry C → C + ξ , where dGξ = 0 and ξ ∈ �•KG
(X;R), and field

strength

ω = dGC.

The flat Ramond-Ramond fields are instead classified by the abelian group Ki
G(X;R/Z),

where i = 0 for Type IIB theory and i = −1 for Type IIA theory. In the previous section
this group was defined to be the subgroup of orbifold differential K-theory with vanish-
ing curvature. In the following we will conjecture a very natural algebraic definition of
these groups which ties them somewhat more directly to equivariant K-theory groups.

To motivate this conjecture, we first compute the groups K•G(V ;R/Z) for the linear
orbifolds of Sect. 6.2 above, wherein the associated differential K-theory groups were
determined explicitly. Using the field strength exact sequence (5.15), by definition one
has

K−1
G (V ;R/Z) ∼= ker

(
ffs : Ǩ0

G(V )→ �even
KG

(V ;R)
)

which from the natural isomorphism (6.4) trivially gives

K−1
G (V ;R/Z) = 0. (6.9)

Similarly, using K−1
G (V ) = 0 one has

K0
G(V ;R/Z) ∼= ker

(
ffs : Ǩ−1

G (V )→ �odd
G,cl(V ;R)

)
.

Using the natural isomorphism (6.6), the field strength map is

ffs ([C]) = = dGC for C ∈ �even
G (V ;R) ,
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giving

K0
G(V ;R/Z) ∼= �even

G,cl(V ;R)

�even
KG

(V ;R)
.

Similarly to Eq. (6.5), there is a natural splitting of the vector space of closed orbifold
differential forms given by

�even
G,cl(V ;R) = (R(G)⊗ R) ⊕

(
d⊕

k=1

�2k
G,cl(V ;R)

)

and we arrive finally at

K0
G(V ;R/Z) = R(G)⊗ R/Z. (6.10)

These results of course simply follow from the fact that V is G-contractible, so that
every dG -closed Ramond-Ramond field is trivial, except in degree zero where the gauge
equivalence classes are naturally parametrized by the twisted sectors of the string the-
ory in Eq. (6.10). Note that both groups of flat fields (6.9) and (6.10) are unchanged
by (equivariant) contraction of the G-module V to a point, as an analogous (but sim-
pler) calculation shows. This suggests that the groups K•G(X;R/Z) have at least some
G-homotopy invariance properties, unlike the differential KG -theory groups. This moti-
vates the following conjectural algebraic framework for describing these groups.

We will propose that the group K•G(X;R/Z) is an extension of the torus of topolog-
ically trivial flat orbifold Ramond-Ramond fields by the torsion elements in K•+1

G (X),
as they have vanishing image under the equivariant Chern character chX . The resulting
group may be called the “equivariant K-theory with coefficients in R/Z”. The short
exact sequence of coefficient groups

0 −→ Z −→ R −→ R/Z −→ 0

induces a long exact sequence of equivariant K-theory groups which, by Bott periodicity,
truncates to the six-term exact sequence

K0
G(X) �� K0

G(X;R) �� K0
G(X;R/Z)

β

��
K−1

G (X;R/Z)

β

��

K−1
G (X;R)�� K−1

G (X).��

(6.11)

The connecting homomorphism β is a suitable variant of the usual Bockstein homomor-
phism. We assume that the equivariant K-theory with real coefficients is defined simply
by the Z2-graded ring

K•G(X;R) = = K•G(X)⊗ R ∼= H•G
(
X ; R⊗ R(−)) ,

where we have used Theorem 2.5. The maps to real K-theory in Eq. (6.11) may then be
identified with the equivariant Chern character chX , whose image is a full lattice in the
Bredon cohomology group H•G(X;R ⊗ R(−)). Then the abelian group K•G(X;R/Z)

sits in the exact sequence

0 −→ K•G(X)⊗ R/Z −→ K•G(X;R/Z)
β−→ Tor

(
K•+1

G (X)
)
−→ 0. (6.12)
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When G = e, Eq. (6.11) is the usual Bockstein exact sequence for K-theory. In this
case, an explicit geometric realization of the groups K•(X;R/Z) in terms of bundles
with connection has been given by Lott [43]. Moreover, in ref. [37] a geometric con-
struction of the map K−1(X;R/Z) → Ǩ0(X) in the field strength exact sequence is
given. Unfortunately, no such geometrical description is immediately available for our
equivariant differential K-theory, due to the lack of a Chern-Weil theory for the homot-
opy theoretic equivariant Chern character of Sect. 2.4. Our conjectural definition (6.12)
is satisfied by the linear orbifold groups (6.9) and (6.10).

In ref. [14] a very different definition of the groups K•G(X;R/Z) is given, by
defining both equivariant K-theory and cohomology using the Borel construction of
Example 1.3. Then the Bockstein exact sequence (6.11) is written for the ordinary
K-theory groups of the homotopy quotient XG = EG ×G X . While these groups
reduce, like ours, to the usual K-theory groups of flat fields when G = e, they do
not obey the exact sequence (6.12). The reason is that the equivariant Chern char-
acter used is not an isomorphism over the reals, as explained in Sect. 2.1 (see also
ref. [47] for a description of K•(XG) as the completion of K•G(X) with respect to a cer-
tain ideal). Moreover, an associated differential K-theory construction would directly
involve differential forms on the infinite-dimensional space XG which is only homo-
topic to the finite-dimensional CW-complex X/G. The physical interpretation of such
fields is not clear. Even in the simple case of the linear orbifolds V studied above,
this description predicts an infinite set of equivariant fluxes of arbitrarily high dimen-
sion on the infinite-dimensional classifying space BG, and one must perform some
non-canonical quotients in order to try to isolate the physical fluxes. The differences
between the equivariant K-theory and Borel cohomology groups of V also require pos-
tulating certain effects of fractional branes on the orbifold, as in ref. [12]. In contrast,
with our constructions the relation between orbifold flux groups and Bredon cohomol-
ogy is much more natural, and it involves only finitely-many orbifold Ramond-Ramond
fields.

6.4. Consistency conditions. As we have stressed throughout this paper, the usage of
Borel cohomology as a companion to equivariant K-theory in the topological classifi-
cation of D-branes and Ramond-Ramond fluxes on orbifolds has various undesirable
features, most notably the fact that it involves torsion classes substantially, especially
when finite group cohomology is involved. In our applications to string geometry, it is
more convenient to use an equivariant cohomology theory with substantial torsion-free
information. Bredon cohomology naturally accomplishes this, as instead of group coho-
mology the basic object is a representation ring. In fact, as we now demonstrate, the
formulation of topological consistency conditions for orbifold Ramond-Ramond fields
and D-branes within the framework of equivariant K-theory naturally necessitates the
use of classes in Bredon cohomology.

Given a Bredon cohomology class λ ∈ H•G(X; R(−)), let us ask if there exists
a Ramond-Ramond field for which ω = λ in the sense of Eq. (6.3). For this, we
must find an equivariant K-theory lift ξ ∈ K•G(X) of λ. As in the non-equivariant
case [22,48], the obstructions to such a lift can be determined via a suitable spec-
tral sequence. For equivariant K-theory the appropriate spectral sequence is described
in refs. [20,50] (see also ref. [58]) using the skeletal filtration (Xn) of Sect. 1.1. We
will now briefly explain the construction of this spectral sequence and its natural rela-
tionship with the obstruction theory for Ramond-Ramond fluxes in Bredon
cohomology.
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The E1-term of the spectral sequence is the relative G-equivariant K-theory group

Ep,q
1 = K p+q

G (X p, X p−1)

with differential

dp,q
1 : Ep,q

1 −→ Ep+1,q
1

induced by the long exact sequence of the triple (X p+1, X p, X p−1) in equivariant K-
theory, i.e., dp,q

1 is the composition of the map i∗ induced by the inclusion i : (X p,∅) ↪→
(X p, X p−1)with the cellular coboundary operator of the pair (X p+1, X p). From Eq. (1.1)

it follows that there is a homeomorphism
∐

j∈Jp

(
B̊

p
j × G/K j

)
→ X p\X p−1, and

hence

Ep,q
1
∼=
⊕

j∈Jp

K p+q
G

(
B̊

p
j × G/K j

) ∼=
⊕

j∈Jp

Kq
G

(
G/K j

)
.

Thus Ep,q
1 = 0 for q odd, while for q even the group Ep,q

1 is a direct sum of representation
rings R(K j ) over all isotropy subgroups of p-cells of orbit type G/K j . It parametrizes
equivariant K-theory classes defined on the p-skeleton of X which are trivial on the
(p − 1)-skeleton, and gives the supports of p-form fields and charges on the orbifold
which carry no lower or higher degree fluxes.

The E2-term of the spectral sequence is the cohomology of the differential d1. The
cohomology of the cochain complex assembled from such terms is the equivariant coho-
mology with coefficient system R(−) on Or(G,F(X p)) for q = 0, and thus a neces-
sary condition for a p-form Ramond-Ramond field to lift to K•G(X) is that it define a
non-trivial cocycle in Bredon cohomology. This is consistent with Definition 5.1. The
resulting Atiyah-Hirzebruch spectral sequence may then be written

Ep,q
2 = Hp

G

(
X ; π−qK G(−)

)
"⇒ K p+q

G (X)

and it lives in the first and fourth quadrants of the (p, q)-plane. On the r th terms Ep,q
r ,

the differential dp,q
r has bidegree (r,−r +1), and Ep,q

r+1 is the corresponding cohomology
group. Note that dp,q

r = 0 for all r even, since then either its source or its target vanishes
(as Kq(C[H ]) = 0 for all q odd and H ≤ G). The E∞-term is the inductive limit

Ep,q∞ = lim−→
r

Ep,q
r .

For a finite-dimensional manifold X , one has Ep,q
r = Ep,q∞ for all r > dim(X) and the

spectral sequence converges to K p+q
G (X). This means that the E∞-term is the associated

graded group of a decreasing finite filtration filt p,q K p+q
G (X) ⊂ filt p−1,q+1 K p+q

G (X),
0 ≤ p ≤ dim(X) with Kq

G(X) = filt0,q Kq
G(X) and

filt p,q K p+q
G (X)

filt p+1,q−1 K p+q
G (X)

∼= Ep,q∞ . (6.13)

Explicitly, if ι : X p−1 ↪→ X denotes the inclusion of the (p − 1)-skeleton in X , then
the filtration groups

filt p,q K p+q
G (X) := ker

(
ι∗ : K p+q

G (X)→ K p+q
G (X p−1)

)
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consist of Ramond-Ramond fluxes where the field strength ω is a form of degree ≥ p,
while the extension groups (6.13) consist of p-form fluxes with vanishing higher and
lower degree fluxes. By Theorem 2.5, the equivariant Chern character chX determines
an isomorphism from the limit of the spectral sequence to its E2-term. Thus the spectral
sequence collapses rationally, and so the images of all higher differentials dp,q

r , r > 2
in the spectral sequence consist of torsion classes.

It follows that the next non-trivial obstruction to extending a Ramond-Ramond field
is given by a “cohomology operation”

dp,0
3 : Hp

G

(
X ; R(−)) −→ Hp+3

G

(
X ; R(−)) . (6.14)

Thus a necessary condition for a Bredon cohomology class λ ∈ Hp
G(X; R(−)) to survive

to Ep,0∞ is given by

dp,0
3 (λ) = 0. (6.15)

We interpret the condition (6.15) as a (partial) requirement of global worldsheet anom-
aly cancellation for Ramond-Ramond fluxes and, dually, the worldvolume homology
cycles that they pair with. This is the orbifold generalization of the Freed-Witten condi-
tion [22,30,48] formulated in terms of obstruction classes in Bredon cohomology. It is
a necessary condition for the existence of a fractional D-brane whose lowest non-van-
ishing Ramond-Ramond charge is λ ∈ Hp

G(X; R(−)). On the other hand, in computing
the E3-term as the cohomology of the differential (6.14), we must also take the quotient
by the image of dp−3,0

3 . This means that a class λ satisfying Eq. (6.15) must be further
subjected to the identifications

λ ∼ λ + dp−3,0
3 (λ′ ) (6.16)

in Ep,0
3 , for any class λ′ ∈ Hp−3

G (X; R(−)). We interpret the condition (6.16) as account-
ing for Ramond-Ramond charge violation due to D-instanton effects in the orbifold
background, as explained in ref. [48] for the non-equivariant case. It means that while
there exists a fractional brane whose lowest Ramond-Ramond charge is dp−3,0

3 (λ′ ), this
D-brane is unstable.

The passage from the limit (6.13) with q = 0 to the actual equivariant K-theory group
K p

G(X) requires solving a typically non-trivial extension problem. Even when the spec-
tral sequence collapses at the E2-term, the extension can lead to important torsion correc-
tions which distinguish the classifications of Ramond-Ramond fields based on Bredon
cohomology and on equivariant K-theory. The extension problem changes the additive
structure on the K-theory group of fluxes from that of the equivariant cohomology clas-
ses. This corresponds physically to non-trivial correlations between Ramond-Ramond
fields of different degrees, when represented by orbifold differential forms. This torsion
enhancement in equivariant K-theory compared to Bredon cohomology can shift the
Dirac charge quantization condition on the Ramond-Ramond fields by fractional units
and can play an important role near the orbifold points [12,13].

In the non-equivariant case G = e, the differential dp,0
3 is known to be given by

the Steenrod square cohomology operation Sq3. The vanishing condition Sq3(λ) = 0
implies the vanishing of the third integer Stieffel-Whitney class of the Poincaré dual cycle
to λ ∈ Hp(X;Z), which is just the condition guaranteeing that the corresponding brane
worldvolume is a spinc submanifold of X . Unfortunately, for G 	= e the differential
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dp,0
3 is not known and the geometrical meaning of the condition (6.15) is unclear.

It would be interesting to understand this requirement in terms of an obstruction theory
for Bredon cohomology, analogously to the non-equivariant case, as this would open
up interesting new consistency conditions for D-branes and Ramond-Ramond fields on
global orbifolds [X/G]. However, we are not aware of any characteristic class theory
underlying the Bredon cohomology groups Hp

G(X; R(−)).

Appendix A. Linear Algebra in Functor Categories

In this appendix we will summarize some notions about algebra in functor categories
that were used in the main text of the paper. They generalize the more commonly used
concepts for modules over a ring. For further details see ref. [23].

Let R be a commutative ring, and denote the category of (left) R-modules by R−Mod.
Let� be a small category, i.e., its class of objects Obj(�) is a set. If C is another category,
then one denotes by

[�,C]

the functor category of (covariant) functors � → C. The objects of [�,C] are (covar-
iant) functors φ : � → C and a morphism from φ1 to φ2 is a natural transformation
α : φ1 → φ2 between functors.

In particular, in the main text we used the functor category

R�−Mod := [�, R−Mod]

whose objects are called left R�-modules. If one denotes with �op the dual category to
�, then there is also the functor category

Mod−R� := [�op, R−Mod
]

of contravariant functors � → R−Mod, whose objects are called right R�-modules.
As an example, let G be a discrete group regarded as a category with a single object and
a morphism for each element of G. A covariant functor G → R−Mod is then the same
thing as a left module over the group ring R[G] of G over R.

As the name itself suggests, all standard definitions from the linear algebra of mod-
ules have extensions to this more general setting. For instance, the notions of submodule,
kernel, cokernel, direct sum, coproduct, etc. can be naturally defined objectwise. If M
and N are R�-modules, then HomR�(M, N ) is the R-module of all natural transforma-
tions M → N . This notation should not be confused with the one used for the set of all
morphisms between two objects in �, and usually it is clear from the context.

If M is a right R�-module and N is a left R�-module, then one can define their
categorical tensor product

M ⊗R� N

in the following way. It is the R-module given by first forming the direct sum

F =
⊕

λ∈Obj(�)

M(λ)⊗R N (λ)

and then quotienting F by the R-submodule generated by all relations of the form

f ∗(m)⊗ n − m ⊗ f∗(n) = 0 ,
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where ( f : λ→ ρ) ∈ Mor(�), m ∈ M(ρ), n ∈ N (λ) and f ∗(m) = M( f )(m), f∗(n) =
N ( f )(n). This tensor product commutes with coproducts. If M and N are functors from
� to the category of vector spaces over a field K, then their tensor product is naturally
equipped with the structure of a vector space over K. When� is the orbit category Or(G)

and R = Z, the tensor product has precise limiting cases. For an arbitrary contravariant
module M and the constant covariant module N , the categorical product M⊗ZOr(G) N is
the tensor product of the right Z[G]-module M(G/e) with the constant left Z[G]-mod-
ule N (G/e), M(G/e)⊗Z[G] N (G/e). On the other hand, if the contravariant module M
is constant and the covariant module N is arbitrary, then M ⊗ZOr(G) N is just N (G/G).

Appendix B. Equivariant K-Homology

This appendix is devoted to explaining in more detail some of the definitions and tech-
nical constructions in equivariant K-homology theories that were used in the main text
to describe states of D-branes in orbifolds.

B.1. Spectral definition. A natural way to define the equivariant homology theory KG• is
by means of a spectrum for equivariant topological K-theory K•G , which within the con-
text of Sect. 2 is a particular covariant functor VectG(−) from the orbit category Or(G)

to the tensor category Spec of spectra [20]. Given any G-complex X , the corresponding
pointed G-space is X+ = X � pt and one defines the loop spectrum X+ ⊗G VectG(−)
by

X+ ⊗G VectG(−) =
∐

G/H∈Or(G)

(
X H

+ ∧ VectG(G/H)
)/∼, (B.1)

where the equivalence relation∼ is generated by the identifications f ∗(x)∧s ∼ x∧ f∗(s)
with ( f : G/K → G/H) ∈ Mor(Or(G)), x ∈ X H

+ , and s ∈ VectG(G/K )•. One then
puts

KG• (X) := π•
(

X+ ⊗G VectG(−)
)
. (B.2)

By using various G-homotopy equivalences of the loop spectra (B.1), one shows that
this definition of equivariant K-homology comes with a natural induction structure in the
sense of Sect. 1.2. For the trivial group it reduces to the ordinary K-homology Ke• = K•
given by the Bott spectrum BU . If G is a finite group, any finite-dimensional represen-
tation of G naturally extends to a complex representation of the group ring C[G]. Then
there is an analytic assembly map

ass : KG• (X) −→ K• (C[G])
to the K-theory of the ring C[G], induced by the collapsing map X → pt and the
isomorphisms

K• (C[H ]) ∼= π•
(

VectG(G/H)
) ∼= KG• (G/H) ∼= R(H)

for any subgroup H ≤ G. In the following we will give two concrete realizations of the
homotopy groups (B.2).
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B.2. Analytic definition. The simplest realization of the equivariant K-homology group
KG• (X) is within the framework of an equivariant version of Kasparov’s KK-theory
KKG• . Let A be a G-algebra, i.e., a C∗-algebra A together with a group homomorphism

λ : G −→ Aut(A).

By a Hilbert (G,A)-module we mean a Hilbert A-module E together with a G-action
given by a homomorphism � : G → GL(E) such that

�g(ε · a) = �g

(
ε · λg(a)

)
(B.3)

for all g ∈ G, ε ∈ E and a ∈ A. Let L(E) denote the ∗-algebra of A-linear maps
T : E→ E admitting an adjoint with respect to the A-valued inner product on E. The
induced G-action on L(E) is given by g ·T := �g ◦T ◦�g−1 . Let K(E) be the subalgebra
of L(E) consisting of generalized compact operators.

Given a pair (A,B) of G-algebras, let DG(A,B) be the set of triples (E, φ, T ), where
E is a countably generated Hilbert (G,B)-module,φ : A→ L(E) is a ∗-homomorphism
which commutes with the G-action,

φ
(
λg(a)

) = �g ◦ φ(a) ◦�g−1 (B.4)

for all g ∈ G and a ∈ A, and T ∈ L(E) such that

1) [T, φ(a)] ∈ K(E) for all a ∈ A; and
2) φ(a) (T − T ∗), φ(a) (T 2 − 1), φ(a) (g · T − T ) ∈ K(E) for all a ∈ A and g ∈ G.

The standard equivalence relations of KK-theory are now analogously defined. The set of
equivalence classes in DG(A,B) defines the equivariant KK-theory groups KKG• (A,B).

If X is a smooth proper G-manifold without boundary, and G acts on X by diffe-
omorphisms, then the algebra A = C0(X) of continuous functions on X vanishing at
infinity is a G-algebra with automorphism λg on A given by

λg( f )(x) := (g∗ f
)
(x) = f

(
g−1 · x

)
,

where g∗ denotes the pullback of the G-action on X by left translation by g−1 ∈ G. We
define

KG• (X) := KKG• (C0(X) , C) (B.5)

with G acting trivially on C. The conditions (B.3) and (B.4) naturally capture the phys-
ical requirements that physical orbifold string states are G-invariant and also that the
worldvolume fields on a fractional D-brane carry a “covariant representation” of the
orbifold group [26].

B.3. The equivariant Dirac class. We can determine a canonical class in the abelian
group (B.5) as follows. Let dim(X) = 2n, and let G be a finite subgroup of the rotation
group SO(2n).11 Let

Cliff(2n) = Cliff+(2n)⊕ Cliff−(2n)

11 Throughout the extension to KG
1 or K−1

G and dim(X) odd can be described in the same way as in degree

zero by replacing X with X × S
1.
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denote the complex Z2-graded euclidean Clifford algebra on n generators e1, . . . , en
with the relations

ei e j + e j ei = −2 δi j .

A choice of a complete G-invariant Riemannian metric on X defines a G-bundle of
Clifford algebras

Cliff = Cliff
(
T ∗X
) := Fr∗ ×SO(2n) Cliff(2n)

which is an associated bundle to the metric coframe bundle over X , the principal SO(2n)-
bundle Fr∗ = Fr(T ∗X ) of oriented orthonormal frames on the cotangent bundle T ∗X =
Fr∗×SO(2n) R

2n . The action of SO(2n) on the Clifford algebra is through the spin group
Spin(2n) ⊂ Cliff(2n). The Lie group Spinc(2n) ⊂ Cliff(2n) is a central extension of
SO(2n) by the circle group U(1),

1 −→ U(1) −→ Spinc(2n) −→ SO(2n) −→ 1 , (B.6)

where the quotient map in Eq. (B.6) is consistent with the double covering of SO(2n)
by Spin(2n) so that

Spinc(2n) = Spin(2n)×Z2 U(1).

The G-manifold X is said to have a G-spinc structure or to be KG-oriented if there is
an extension of the coframe bundle to a principal Spinc(2n)-bundle Fr∗L over X which is
compatible with the G-action. The extension Fr∗L may be regarded as a principal circle
bundle over Fr∗,

U(1)

������������

��
Ĝ ��

��

Spinc(2n) ��

��

Fr∗L ��

��

X ,

G �� SO(2n) �� Fr∗

�����������

where the pullback square on the bottom left defines the required covering of the orbifold
group G < SO(2n) by a subgroup of the spinc group Ĝ < Spinc(2n). This lift is also
necessary in order to account for the spacetime fermions present in string theory. The ker-
nel of the homomorphism Ĝ → G is identified with the circle group U(1) < Spinc(2n)
in the Clifford algebra Cliff(2n). We fix a choice of lift and hence assume that G is a
discrete subgroup of the spinc group. Z2-graded Clifford modules are likewise extended
to representations of C[G] ⊗ Cliff(2n), with C[G] the group ring of G, called G-Clif-
ford modules. The topological obstruction to the existence of a G-spinc structure on X
is the equivariant third integral Stiefel-Whitney class (W3)G(T ∗X ) ∈ H3

G(X;Z) of the
cotangent bundle T ∗X in Borel cohomology.

The associated bundles of half-spinors on X are defined as

S± = S
(
T ∗X
)± := Fr∗L ×Spinc(2n) �± , (B.7)

where �± are the irreducible half-spin representations of SO(2n). Since G lifts to Ĝ
in the spinc group, the half-spin representations �± restrict to representations of G and
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the half-spinor bundles (B.7) are G-bundles. The G-invariant Levi-Civita connection
determines a connection one-form on Fr∗, and together with a choice of G-invariant
connection one-form on the principal U(1)-bundle Fr∗L → Fr∗, they determine a con-
nection one-form on the principal Spinc(2n)-bundle Fr∗L → X which is G-invariant.
This determines an invariant connection

∇S⊗E := ∇S ⊗ 1 + 1⊗∇E : C∞
(
X , S+ ⊗ E

) −→ C∞
(
X , T ∗X ⊗ S+ ⊗ E

)
,

where ∇E is a G-invariant connection on a G-bundle E → X . The contraction given
by Clifford multiplication defines a map

C : C∞
(
X , T ∗X ⊗ S+ ⊗ E

) −→ C∞
(
X , S− ⊗ E

)

which graded commutes with the G-action, and the G-invariant spinc Dirac operator on
X with coefficients in E is defined as the composition

D/ X
E = C ◦ ∇S⊗E . (B.8)

We will view the operator (B.8) as an operator on L2-spaces

D/ X
E : L2 (X , S+ ⊗ E

) −→ L2 (X , S− ⊗ E
)
.

It induces a class
[
D/ X

E

] ∈ KG
0 (X) as follows. The G-algebra C0(X) acts on the Z2-

graded G-Hilbert space E := L2(X, S ⊗ E) by multiplication. Define the bounded

G-invariant operator T := D/ X
E

(
(D/ X

E )
2 + 1
)−1/2 ∈ FredG . Then

[
D/ X

E

]
is represented

by the G-equivariant Fredholm module (E, T ).

B.4. Geometric definition. The natural geometric description of D-branes in an orbifold
space is provided by the topological version of the groups KG• (X) due to Baum, Connes
and Douglas [8,7]. This can be defined for an arbitrary discrete, countable group G on
the category of proper, finite G-complexes X and proven to be isomorphic to analytic
equivariant K-homology [10]. Recall that the topological equivariant K-theory K•G(X)

is defined by applying the Grothendieck functor K• to the additive category VectCG(X)

whose objects are complex G-vector bundles over X , i.e., K•G(X) := K•
(

VectCG(X)
)

.

In the homological setting, the relevant category is instead the additive category of
G-equivariant K-cycles DG(X), whose objects are triples (W, E, f ), where

(a) W is a manifold without boundary with a smooth proper cocompact G-action and
G-spinc structure;

(b) E is an object in VectCG(W ); and
(c) f : W → X is a G-map.

Two G-equivariant K-cycles (W, E, f ) and (W ′, E ′, f ′ ) are said to be isomorphic if
there is a G-equivariant diffeomorphism h : W → W ′ preserving the G-spinc structures
on W, W ′ such that h∗(E ′ ) ∼= E and f ′ ◦ h = f .

Define an equivalence relation∼ on the category DG(X) generated by the operations
of
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• Bordism: (Wi , Ei , fi ) ∈ DG(X), i = 0, 1 are bordant if there is a triple (M, E, f )
where M is a manifold with boundary ∂M , with a smooth proper cocompact G-action
and G-spinc structure, E → M is a complex G-vector bundle, and f : M → X is
a G-map such that (∂M, E |∂M , f |∂M ) ∼= (W0, E0, f0)� (−W1, E1, f1). Here −W1
denotes W1 with the reversed G-spinc structure;
• Direct sum: If (W, E, f ) ∈ DG(X) and E = E0 ⊕ E1, then

(W, E, f ) ∼= (W, E0, f )� (W, E1, f ) ;
and
• Vector bundle modification: Let (W, E, f ) ∈ DG(X) and H be an even-dimensional

G-spinc vector bundle over W . Let Ŵ = S(H⊕11) denote the sphere bundle of H⊕11,
which is canonically a G-spinc manifold, with G-bundle projection π : Ŵ → W . Let

S(H) = S(H)+ ⊕ S(H)−

denote the Z2-graded G-bundle over W of spinors on H . Set Ê = π∗
(
(S(H)+)∨ ⊗ E

)

and f̂ = f ◦ π . Then
(

Ŵ , Ê , f̂
) ∈ DG(X) is the vector bundle modification of

(W, E, f ) by H .

We set

KG
0,1(X) = DG

even,odd(X)
/∼,

where the parity refers to the dimension of the K-cycle, which is preserved by ∼.
Using the equivariant Dirac class, one can construct a homomorphism from the geo-

metric to the analytic K-homology group. On K-cycles we define (W, E, f ) �→ f∗
[
D/ W

E

]

and extend linearly. This map can be used to express G-index theorems within this homo-
logical framework and it extends to give an isomorphism between the two equivariant
K-homology groups [10]. (See also ref. [57] for a related construction in the non-equi-
variant case.)

Appendix C. D-Brane charges of Equivariant K-Cycles

In this appendix we will review the construction of the equivariant Gysin homomorphism
and how it shows that D-brane charges on the orbifold [X/G] take values in the equivari-
ant K-theory K•G(X). Let X and W be smooth compact G-manifolds, and f : W → X
a smooth proper G-map. We begin by dealing with the non-equivariant setting G = e.
Assume that the Z2-graded bundle ν of Eq. (4.10) is of even rank r = 2n and endowed
with a spinc structure. We will generalize the construction [49,54,62], establishing that
the charge of a D-brane supported on W with Chan-Paton gauge bundle E → W in
Type II superstring theory without H -flux takes values in the complex K-theory of
spacetime X , to D-branes represented by generic topological K-cycles (W, E, f ), i.e.,
including those D-branes which are not representable as wrapping embedded cycles in
X . It is based on the diagram

ν ∼= U

π

��

j

�����������

W

κ

��

f �� X

X × R
2q

π1

�����������
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over the brane immersion f , which we explain momentarily. The spinc condition on
the bundle ν is the appropriate generalization of the Freed-Witten anomaly cancellation
condition [30] to this situation. It amounts to a choice of line bundle L → W whose
first Chern class

c1(L) ∈ H2(W ;Z)
obeys c1(L) ≡ f ∗w2(TX ) − w2(TW ) mod 2, where w2(TX ) and w2(TW ) are the sec-
ond Stiefel-Whitney classes of the tangent bundles of X and W . The set of all such
K-orientations is an affine space modelled on 2 H2(W ;Z).

Consider first the usual case where f : W ↪→ X is a smoothly embedded cycle.
Then the virtual bundle ν can be identified (in KO-theory) with the normal bundle to W
with respect to f , which is the quotient bundle π : f ∗(TX )/TW → W . Upon choosing
a Riemannian metric on X , we can identify ν with a tubular neighbourhood U of f (W )

via a diffeomorphism from the open embedding j : U ↪→ X onto a neighbourhood
of the zero section embedding W ↪→ ν. Let [π∗S(ν)+, π∗S(ν)−; c(v)] be the Atiyah-
Bott-Shapiro representative of the Thom class Thom(ν), in the K-theory with compact
vertical support

Kr
cpt(ν) := Kr (ν, ν \W ) ,

which restricts to the Bott class u−n ∈ K−r (pt) on each fibre of ν. Here

S(ν)± −→ W

are the half-spinor bundles associated to ν and the morphism c(v) : π∗S(ν)+ →
π∗S(ν)− is given by Clifford multiplication by the tautological section v of the bundle
π∗ν → ν which assigns to a vector in ν the same vector in π∗ν.

Then one can define the Gysin homomorphism in ordinary K-theory

f K
! : K•(W ) −→ K•(X).

It is defined as the composition of the Thom isomorphism

K•(W )
≈−→ K•cpt(ν)

ξ �−→ π∗(ξ)⊗ Thom(ν)

with the natural “extension by zero” homomorphism j : K•cpt(ν) → K•(X) given by
composing K•(U,U\W )→ K•(X, X\W )→ K•(X), where the first map is the exci-
sion isomorphism and the second map is induced by the inclusion (X, pt) ↪→ (X, W ).
For a general smooth proper map f : W → X , we use the fact that every smooth com-
pact manifold W can be smoothly embedded in R

2q for q sufficiently large to define a
parametrized version that yields an embedding

κ : W −→ X × R
2q ,

whose normal bundle is spinc. The corresponding Gysin map is a homomorphism

κK
! : K•(W ) −→ K•cpt

(
X × R

2q
)
.
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The Gysin homomorphism f K
! : K•(W )→ K•(X) is then defined as the composition

of κK
! with the inverse Thom isomorphism K•cpt(X × R

2q) ∼= K•(X) for the trivial
spinc bundle

π1 : X × R
2q −→ X.

By homotopy invariance of K-theory and functoriality for pushforward maps, the map
f K
! is independent of the choice of identification of the normal bundle with a tubular

neighbourhood and of Whitney embedding W ↪→ R
2q .

Let us now consider the G-actions on W and on X . In a similar way as in ordinary
K-theory, if ν is KG -oriented then one has the equivariant Thom isomorphism

K•G(W )
≈−→ K•G,cpt(ν)

ξ �−→ π∗(ξ)⊗ ThomG(ν) ,

where the equivariant Thom class ThomG(ν) ∈ Kr
G,cpt(ν) is defined in the same way

as above using the G-spinc structure on ν and the equivariant version of the Atiyah-
Bott-Shapiro construction [42]. The associated Gysin homomorphism, constructed as
above via a choice of G-invariant Riemannian metric on X and of G-invariant Whit-
ney embedding W ↪→ R

2q with G acting trivially on R
2q , is the pushforward map

f KG
! : K•G(W ) → K•G(X). This establishes that the charge of a fractional D-brane in

the Type II spacetime orbifold [X/G], associated to a generic G-equivariant K-cycle
(W, E, f ) ∈ DG(X) on the covering space X , takes values f KG

! ([E]) ∈ K•G(X) in the
equivariant K-theory of X .
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