661 research outputs found

    Spreading of wave packets in disordered systems with tunable nonlinearity

    Full text link
    We study the spreading of single-site excitations in one-dimensional disordered Klein-Gordon chains with tunable nonlinearity ∣ul∣σul|u_{l}|^{\sigma} u_{l} for different values of σ\sigma. We perform extensive numerical simulations where wave packets are evolved a) without and, b) with dephasing in normal mode space. Subdiffusive spreading is observed with the second moment of wave packets growing as tαt^{\alpha}. The dependence of the numerically computed exponent α\alpha on σ\sigma is in very good agreement with our theoretical predictions both for the evolution of the wave packet with and without dephasing (for σ≥2\sigma \geq 2 in the latter case). We discuss evidence of the existence of a regime of strong chaos, and observe destruction of Anderson localization in the packet tails for small values of σ\sigma.Comment: 9 pages, 7 figure

    Quasi-stationary chaotic states in multi-dimensional Hamiltonian systems

    Full text link
    We study numerically statistical distributions of sums of chaotic orbit coordinates, viewed as independent random variables, in weakly chaotic regimes of three multi-dimensional Hamiltonian systems: Two Fermi-Pasta-Ulam (FPU-β\beta) oscillator chains with different boundary conditions and numbers of particles and a microplasma of identical ions confined in a Penning trap and repelled by mutual Coulomb interactions. For the FPU systems we show that, when chaos is limited within "small size" phase space regions, statistical distributions of sums of chaotic variables are well approximated for surprisingly long times (typically up to t≈106t\approx10^6) by a qq-Gaussian (1<q<31<q<3) distribution and tend to a Gaussian (q=1q=1) for longer times, as the orbits eventually enter into "large size" chaotic domains. However, in agreement with other studies, we find in certain cases that the qq-Gaussian is not the only possible distribution that can fit the data, as our sums may be better approximated by a different so-called "crossover" function attributed to finite-size effects. In the case of the microplasma Hamiltonian, we make use of these qq-Gaussian distributions to identify two energy regimes of "weak chaos"-one where the system melts and one where it transforms from liquid to a gas state-by observing where the qq-index of the distribution increases significantly above the q=1q=1 value of strong chaos.Comment: 32 pages, 13 figures, Submitted for publication to Physica

    Chaoticity without thermalisation in disordered lattices

    Full text link
    We study chaoticity and thermalization in Bose-Einstein condensates in disordered lattices, described by the discrete nonlinear Schr\"odinger equation (DNLS). A symplectic integration method allows us to accurately obtain both the full phase space trajectories and their maximum Lyapunov exponents (mLEs), which characterize their chaoticity. We find that disorder destroys ergodicity by breaking up phase space into subsystems that are effectively disjoint on experimentally relevant timescales, even though energetically, classical localisation cannot occur. This leads us to conclude that the mLE is a very poor ergodicity indicator, since it is not sensitive to the trajectory being confined to a subregion of phase space. The eventual thermalization of a BEC in a disordered lattice cannot be predicted based only on the chaoticity of its phase space trajectory

    Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi--Pasta--Ulam lattices by the Generalized Alignment Index method

    Full text link
    The recently introduced GALI method is used for rapidly detecting chaos, determining the dimensionality of regular motion and predicting slow diffusion in multi--dimensional Hamiltonian systems. We propose an efficient computation of the GALIk_k indices, which represent volume elements of kk randomly chosen deviation vectors from a given orbit, based on the Singular Value Decomposition (SVD) algorithm. We obtain theoretically and verify numerically asymptotic estimates of GALIs long--time behavior in the case of regular orbits lying on low--dimensional tori. The GALIk_k indices are applied to rapidly detect chaotic oscillations, identify low--dimensional tori of Fermi--Pasta--Ulam (FPU) lattices at low energies and predict weak diffusion away from quasiperiodic motion, long before it is actually observed in the oscillations.Comment: 10 pages, 5 figures, submitted for publication in European Physical Journal - Special Topics. Revised version: Small explanatory additions to the text and addition of some references. A small figure chang
    • …
    corecore