403 research outputs found

    High brightness neutral hydrogen in M31: A new probe of interstellar pressure

    Get PDF
    An observational parameter of our own Galaxy, the peak brightness temperature of neutral hydrogen in emission, was determined almost twenty years ago (Burton 1970). This quantity, although possessing a degree of local variations, has a remarkably consistent peak value of 125 K towards spiral arm segments with a few isolated peaks extending to 135 K, once sufficient spatial and velocity resolution are used (less than or equal to 70 pc, less than or equal to 5 km/s) to resolve the emission peaks. The higher spatial and velocity resolution of more recent surveys has not led to the detection of higher brightnesses. For many years this remarkable observational result has received little attention, primarily because similar data for other galaxies, which would allow a meaningful comparison and analysis, did not exist. Recently this situation has changed. A Westerbork survey of M33 (Deul and Van der Hulst 1987, and private comm.) with 40 pc x 8 km/s resolution has revealed consistent peak values of only 95 plus or minus 5 K (although there is still some question of whether the velocity resolution was sufficient in this case), while a Very Large Array (VLA) survey of M31 (Braun 1989a) with 35 pc x 5 km/s resolution has shown consistent peak values but at a temperature of 155 to 165 K. It has become clear that although peak HI brightness seems to be a well-defined quantity within individual galaxies (with a degree of local variation) there are very significant differences in this quantity amongst different galaxies. Researchers embarked on an observational program directed at a sample of 11 nearby galaxies: NGC 55, 247, 7793, 3031, 2366, 2403, 4236, 4826, 4736, 4244, and 5457. They hope to determine the gas properties and phases as a function of both galaxy type and position within the galaxies utilizing high resolution HI observations and optical narrow band imagery and spectroscopy which are now underway

    Supernova remnants and diffuse ionized gas in M31

    Get PDF
    Researchers have compiled an initial list of radio/optical supernova remnants (SNRs) in M31, by searching for radio identifications of emission-line sources with a high (SII)/H alpha ratio (greater than 0.60). The (SII) filter included both sulfur lines and the H alpha filter did not include (NII). This search revealed 11 SNRs, of which only two were known. In addition, researchers detected radio emission from 3 SNRs that were identified in previous optical surveys (D'Odorico et al., 1980), but that were outside the charge coupled device (CCD) fields. The 14 objects only include the most obvious candidates, but a full search is in progress and the researchers expect to find several more SNRs. Also not all optical SNRs show detectable radio emission and a pure optical list of SNR candidates based only on the ratio of (SII)/H alpha emission contains many more objects. Two conclusions are apparent. First, the radio properties of the SNRs in M31 are quite similar to those of Galactic SNRs as is illustrated. The brightnesses are not systematically lower as has been suggested in the past (Dickel and D'Odorico, 1984). Second, the slope of the relation is close to -2; this slope is expected from the intrinsic dependence between surface brightness and diameter. The radio luminosity of the SNRs does not seem to depend strongly on diameter, or age, contrary to model predictions. Selection effects, however, play an important role in these plots. The CCD images show widespread diffuse ionized gas with a ratio of (SII)/H alpha that is higher than that of discrete HII regions. Discrete HII regions typically show ratios between 0.2 to 0.3, while the diffuse gas in the arms consistently shows ratios of 0.5. Researchers can trace this gas across the spiral arms to emission measures below 5 pc cm (-6). Its properties seem to be similar to that of the diffuse gas in the solar neighborhood

    The disk-halo interface in edge-on spirals

    Get PDF
    We are studying the disk-halo interface in several edge-on spiral galaxies through extensive imagery in H(alpha) and other emission lines from Diffuse Ionized Gas (DIG), also referred to as the Warm Ionized Medium (WIM). In addition, for the nearby Sc galaxy NGC4631 we have obtained x-ray observations with ROSAT, to map the distribution of hot (10(exp 6) - 10(exp 7)) gas in the disk and halo. Here we present initial results for two late-type spirals, NGC4244 and NGC4631

    Detection of [OI] 6300 and Other Diagnostic Emission Lines in the Diffuse Ionized Gas of M33 with Gemini-North

    Get PDF
    We present spectroscopic observations of diffuse ionized gas (DIG) in M33 near the HII region NGC 604. We present the first detection of [OI] 6300 in the DIG of M33, one of the critical lines for distinguishing photo- from shock ionization models. We measure [OI]/Ha in the range of 0.04 to 0.10 and an increase in this ratio with decreasing emission measure. Our measurements of [SII]/Ha and [NII]/Ha also rise with decreasing emission measure, while our [OIII]/Hb measurements remain fairly constant. We have one tentative detection of He I in the region of brightest emission measure, with a ratio of He I/Ha = 0.033 +- 0.019, indicating that the helium is at least partially ionized. We compare our observed emission line ratios to photoionization models and find that field star ionization models do not fit our data well. Leaky HII region models are consistent with our data, without the need to invoke additional ionization mechanisms to fit our [OI] or [OIII] measurements. The closest large HII region is NGC 604 and is therefore a likely candidate for the source of the ionizing photons for the gas in this region.Comment: 12 pages, 4 figures, accepted by ApJ

    Spectrophotometry of HII Regions, Diffuse Ionized Gas and Supernova Remnants in M31: The Transition from Photo- to Shock-Ionization

    Get PDF
    We present results of KPNO 4-m optical spectroscopy of discrete emission-line nebulae and regions of diffuse ionized gas (DIG) in M31. Long-slit spectra of 16 positions in the NE half of M31 were obtained over a 5-15 kpc range in radial distance from the center of the galaxy. The spectra have been used to confirm 16 supernova remnant candidates from the Braun & Walterbos (1993) catalog. The slits also covered 46 HII regions which show significant differences among the various morphological types (center-brightened, diffuse, rings). Radial gradients in emission-line ratios such as [OIII]/Hβ\beta and [OII]/[OIII] are observed most prominently in the center-brightened HII regions. These line ratio trends are either much weaker or completely absent in the diffuse and ring nebulae. The line ratio gradients previously seen in M31 SNRs (Blair, Kirshner, & Chevalier 1981; 1982) are well reproduced by our new data. The spectra of center-brightened HII regions and SNRs confirm previous determinations of the radial abundance gradient in M31. We use diagnostic diagrams which separate photoionized gas from shock-ionized gas to compare the spectral properties of HII regions, SNRs and DIG. This analysis strengthens earlier claims (Greenawalt, Walterbos, & Braun 1997) that the DIG in the disk of M31 is photoionized by a dilute radiation field.Comment: 45 pages, 9 figures, 7 tables, to appear in the Astronomical Journal (December 1999

    The Metallicity Distribution Function of Field Stars in M31's Bulge

    Full text link
    We have used Hubble Space Telescope Wide Field Planetary Camera 2 observations to construct a color-magnitude diagram (CMD) for the bulge of M31 at a location ~1.6 kpc from the galaxy's center. Using scaled-solar abundance theoretical red giant branches with a range of metallicities, we have translated the observed colors of the stars in the CMD to abundances and constructed a metallicity distribution function (MDF) for this region. The MDF shows a peak at [M/H]~0 with a steep decline at higher metallicities and a more gradual tail to lower metallicities. This is similar in shape to the MDF of the Milky Way bulge but shifted to higher metallicities by ~0.1 dex. As is the case with the Milky Way bulge MDF, a pure closed box model of chemical evolution, even with significant pre-enrichment, appears to be inconsistent with the M31 bulge MDF. However, a scenario in which an initial infall of gas enriched the bulge to an abundance of [M/H] ~ -1.6 with subsequent evolution proceeding as a closed box provides a better fit to the observed MDF. The similarity between the MDF of the M31 bulge and that of the Milky Way stands in stark contrast to the significant differences in the MDFs of their halo populations. This suggests that the bulk of the stars in the bulges of both galaxies were in place before the accretion events that occurred in the halos could influence them.Comment: 12 pages, 9 figures, accepted for publication in The Astronomical Journal, October 200

    X-ray emission from the edge-on spiral galaxy NGC 4631

    Get PDF
    This grant supported research of the X-ray emission from the disk and halo of the edge-on spiral galaxy NGC 4631, using data from the ROSAT satellite. The data were obtained on the basis of a proposal submitted by the PI, which was highly ranked in the peer review. It is a pleasure to say that the goals of the project, imaging and spectroscopy of hot gas in the disk and halo of a vigorously star forming galaxy, have been achieved. The results of the project have been submitted for publication, and are in press. A list of the publications is included

    Microlensing Surveys of M31 in the Wide Field Imaging Era

    Full text link
    The Andromeda Galaxy (M31) is the closest large galaxy to the Milky Way, thus it is an important laboratory for studying massive dark objects in galactic halos (MACHOs) by gravitational microlensing. Such studies strongly complement the studies of the Milky Way halo using the the Large and Small Magellanic Clouds. We consider the possibilities for microlensing surveys of M31 using the next generation of wide field imaging telescopes with fields of view in the square degree range. We consider proposals for such imagers both on the ground and in space. For concreteness, we specialize to the SNAP proposal for a space telescope and the LSST proposal for a ground based telescope. We find that a modest space-based survey of 50 visits of one hour each is considerably better than current ground based surveys covering 5 years. Crucially, systematic effects can be considerably better controlled with a space telescope because of both the infrared sensitivity and the angular resolution. To be competitive, 8 meter class wide-field ground based imagers must take exposures of several hundred seconds with several day cadence.Comment: 10 pages, 4 figures, 2 table
    corecore