1,590 research outputs found
Fuzzy modelling of acid mine drainage environments using geochemical, ecological and mineralogical indicators
Fuzzy logic was applied to model acid mine
drainage (AMD) and to obtain a classification index of the environmental impact in a contaminated riverine system.
The data set used to develop this fuzzy model (a fuzzy classifier) concerns an abandoned mine in Northern Portugalâ
Valdarcas mining site. Here, distinctive drainage environments (spatial patterns) can be observed based on the AMD formed in the sulphide-rich waste-dumps. Such environments were established, as the effluent flows through the mining area, using several kinds of indicators.
These are physicalâchemical, ecological and mineralogical parameters, being expressed in a quantitative or qualitative basis. The fuzzy classifier proposed in this paper is a minâ
max fuzzy inference system, representing the spatial behaviour of those indicators, using the AMD environments as patterns. As they represent different levels (classes) of contamination, the fuzzy classifier can be used as a tool, allowing a more reasonable approach, compared with classical models, to characterize the environmental impact caused by AMD. In a general way it can be applied
to other sites where sulphide-rich waste-dumps are promoting the pollution of superficial water through the
generation of AMD
HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis
Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis
Effect of COMBinAtion therapy with remote ischemic conditioning and exenatide on the Myocardial Infarct size: a two-by-two factorial randomized trial (COMBAT-MI)
Remote ischemic conditioning (RIC) and the GLP-1 analog exenatide activate different cardioprotective pathways and may have additive effects on infarct size (IS). Here, we aimed to assess the efficacy of RIC as compared with sham procedure, and of exenatide, as compared with placebo, and the interaction between both, to reduce IS in humans. We designed a two-by-two factorial, randomized controlled, blinded, multicenter, clinical trial. Patients with ST-segment elevation myocardial infarction receiving primary percutaneous coronary intervention (PPCI) within 6 h of symptoms were randomized to RIC or sham procedure and exenatide or matching placebo. The primary outcome was IS measured by late gadolinium enhancement in cardiac magnetic resonance performed 3â7 days after PPCI. The secondary outcomes were myocardial salvage index, transmurality index, left ventricular ejection fraction and relative microvascular obstruction volume. A total of 378 patients were randomly allocated, and after applying exclusion criteria, 222 patients were available for analysis. There were no significant interactions between the two randomization factors on the primary or secondary outcomes. IS was similar between groups for the RIC (24â±â11.8% in the RIC group vs 23.7â±â10.9% in the sham group, Pâ=â0.827) and the exenatide hypotheses (25.1â±â11.5% in the exenatide group vs 22.5â±â10.9% in the placebo group, Pâ=â0.092). There were no effects with either RIC or exenatide on the secondary outcomes. Unexpected adverse events or side effects of RIC and exenatide were not observed. In conclusion, neither RIC nor exenatide, or its combination, were able to reduce IS in STEMI patients when administered as an adjunct to PPCI
A linkage study of candidate loci in familial Parkinson's Disease
BACKGROUND: Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease. Most cases are sporadic, however familial cases do exist. We examined 12 families with familial Parkinson's disease ascertained at the Movement Disorder clinic at the Oregon Health Sciences University for genetic linkage to a number of candidate loci. These loci have been implicated in familial Parkinson's disease or in syndromes with a clinical presentation that overlaps with parkinsonism, as well as potentially in the pathogenesis of the disease. METHODS: The examined loci were PARK3, Parkin, DRD (dopa-responsive dystonia), FET1 (familial essential tremor), BDNF (brain-derived neurotrophic factor), GDNF (glial cell line-derived neurotrophic factor), Ret, DAT1 (the dopamine transporter), Nurr1 and Synphilin-1. Linkage to the α-synuclein gene and the Frontotemporal dementia with parkinsonism locus on chromosome 17 had previously been excluded in the families included in this study. Using Fastlink, Genehunter and Simwalk both parametric and model-free non-parametric linkage analyses were performed. RESULTS: In the multipoint parametric linkage analysis lod scores were below -2 for all loci except FET1 and Synphilin-1 under an autosomal dominant model with incomplete penetrance. Using non-parametric linkage analysis there was no evidence for linkage, although linkage could not be excluded. A few families showed positive parametric and non-parametric lod scores indicating possible genetic heterogeneity between families, although these scores did not reach any degree of statistical significance. CONCLUSIONS: We conclude that in these families there was no evidence for linkage to any of the loci tested, although we were unable to exclude linkage with both parametric and non-parametric methods
Social Transmission and the Spread of Modern Contraception in Rural Ethiopia
Socio-economic development has proven to be insufficient to explain the time and pace of the human demographic transition. Shifts to low fertility norms have thus been thought to result from social diffusion, yet to date, micro-level studies are limited and are often unable to disentangle the effect of social transmission from that of extrinsic factors. We used data which included the first ever use of modern contraception among a population of over 900 women in four villages in rural Ethiopia, where contraceptive prevalence is still low (<20%). We investigated whether the time of adoption of modern contraception is predicted by (i) the proportion of ever-users/non ever-users within both women and their husbands' friendships networks and (ii) the geographic distance to contraceptive ever-users. Using a model comparison approach, we found that individual socio-demographic characteristics (e.g. parity, education) and a religious norm are the most likely explanatory factors of temporal and spatial patterns of contraceptive uptake, while the role of person-to-person contact through either friendship or spatial networks remains marginal. Our study has broad implications for understanding the processes that initiate transitions to low fertility and the uptake of birth control technologies in the developing world
Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tumour progression and metastasis. In this study, we investigated the in vitro and in vivo expression patterns of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1 and TIMP-2 mRNA and protein in a previously described human melanoma xenograft model. This model consists of eight human melanoma cell lines with different metastatic behaviour after subcutaneous (s.c.) injection into nude mice. MMP-1 mRNA was detectable in all cell lines by reverse transcription polymerase chain reaction (RT-PCR), but the expression was too low to be detected by Northern blot analysis. No MMP-1 protein could be found using Western blotting. MMP-2 mRNA and protein were present in all cell lines, with the highest expression of both latent and active MMP-2 in the highest metastatic cell lines MV3 and BLM. MMP-3 mRNA was expressed in MV3 and BLM, and in the non-metastatic cell line 530, whereas MMP-3 protein was detectable only in MV3 and BLM. None of the melanoma cell lines expressed MMP-9. TIMP-1 and TIMP-2 mRNA and protein, finally, were present in all cell lines. A correlation between TIMP expression level and metastatic capacity of cell lines, however, was lacking. MMP and TIMP mRNA and protein expression levels were also studied in s.c. xenograft lesions derived from a selection of these cell lines. RT-PCR analysis revealed that MMP-1 mRNA was present in MV3 and BLM xenografts, and to a lesser extent in 530. Positive staining for MMP-1 protein was found in xenograft lesions derived from both low and high metastatic cell lines, indicating an in vivo up-regulation of MMP-1. MMP-2 mRNA was detectable only in xenografts derived from the highly metastatic cell lines 1F6m, MV3 and BLM. In agreement with the in vitro results, the highest levels of both latent and activated MMP-2 protein were observed in MV3 and BLM xenografts. With the exception of MMP-9 mRNA expression in 530 xenografts, MMP-3, MMP-9, and TIMP-1 mRNA and protein were not detectable in any xenograft, indicating a down-regulated expression of MMP-3 and TIMP-1 in vivo. TIMP-2 mRNA and protein were present in all xenografts; interestingly, the strongest immunoreactivity of tumour cells was found at the border of necrotic areas. Our study demonstrates that of all tested components of the matrix metalloproteinase system, only expression of activated MMP-2 correlates with increased malignancy in our melanoma xenograft model, corroborating an important role of MMP-2 in human melanoma invasion and metastasis. © 1999 Cancer Research Campaig
A stable genetic polymorphism underpinning microbial syntrophy
Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in âs=13âTeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of âs=13ââTeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139ââfbâ1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015â2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- âŠ