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Abstract  

Fuzzy logic was applied to model acid mine drainage (AMD) and to obtain a classification index of the 

environmental impact in a contaminated riverine system. The data set used to develop this fuzzy model (a 

fuzzy classifier) concerns to an abandoned mine in Northern Portugal – Valdarcas mining site. Here, 

distinctive drainage environments (spatial patterns) can be observed based on the acid mine drainage 

formed in the sulphide-rich waste-dumps. Such environments were established, as the effluent flows 

through the mining area, using several kinds of indicators. These are physical-chemical, ecological and 

mineralogical parameters, being expressed in a quantitative or qualitative basis. The fuzzy classifier 

proposed in this paper is a min-max fuzzy inference system, representing the spatial behaviour of those 

indicators, using the AMD environments as patterns. As they represent different levels (classes) of 

contamination, the fuzzy classifier can be used as a tool, allowing a more reasonable approach, compared 

with classical models, to characterize the environmental impact caused by AMD.  

In a general way it can be applied to other sites where sulphide-rich waste-dumps are promoting the 

pollution of superficial water through the generation of AMD. 

 

Keywords (5): Acid mine drainage, fuzzy classifier, min-max fuzzy, environmental 

impact classification, Valdarcas - Portugal. 
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Introduction 

Acid mine drainage (AMD) that emerges from sulphide-rich waste-dumps is a peculiar 

focus of environmental impact in aquatic systems. It is recognized as a complex multi-

factor pollutant, which promotes chemical, physical, biological and ecological 

interactive effects on the ecosystems (Gray 1998). To better understand its origin, as 

well as to describe its properties and to evaluate its impact, the use of diversified but, at 

the same time, specific types of indicators is imposed. For instance, the role of 

mineralogy on controlling bioavailability of pollutants justifies the search for 

mineralogical indicators, which must be combined with the classical physical-chemical 

parameters. This is the case of supergenic mineralogical assemblages, generically 

named as AMD precipitates. They include hydrated metal-sulphate minerals, which 

occur as salt efflorescences, and iron-oxyhydroxides, which occur as ochre mixtures, 

both resulting from the oxidation and hydrolysis of sulphide-rich wastes, in particular 

iron sulphides, such as pyrite and pyrrhotite (Jambor et al. 2000). 

Considering the ecological effects, AMD sites are extreme environments since they 

impose stress on the majority of organisms, mainly because of acidity and high metal 

levels. In that way, acidophilic or acid-tolerant organisms can indicate the existence of 

biological degraded conditions. From a monitoring perspective, some algae, mainly the 

macroalgal communities, have a great deal of importance. They have optimal growth in 

acidic conditions, most are mesophilic, and, especially, they are easy to recognize 

macroscopically. Therefore, although there are inherent problems with spatial and 

temporal heterogeneity when compared with microalgal community, they can be used as 

expeditious indicators in analysing systems impacted by AMD (Valente and Leal 

Gomes 2007). This is the case of Klebsormidium and Euglena genus that are well-

known as metal resistant and have been consistently reported in literature to occur in 



AMD (Brake et al. 2001, Casiot et al. 2004, Nixdorf et al. 2001, Olaveson and 

Nalewajko 2000, Sabater et al. 2003, Verb and Vis 2001). 

Since temporal and spatial variations of AMD are difficult to compare using individual 

parameters, Gray (1996, 1998) proposed an AMD index (AMDI) to evaluate such 

waters. This quantitative index is calculated using a modified arithmetic weighted 

index, considering several physical and chemical indicators. However, as stated 

previously, the database that best describes AMD must contain quantitative data, such 

as the conventional water composition (ex. pH and sulphate), which is expressed in 

concentration units, and qualitative information, like the one related with the ecology 

and the mineralogy of the impacted systems. In these conditions there is considerable 

difficulty to model AMD using classical statistical approaches, since the resulted 

indexes must represent a numeric or descriptive qualification resulting from the 

integration of very different kind of indicators that are often expressed in non 

comparable units.  

The models based on fuzzy logic come appropriated to deal with the knowledge base 

that results from the characterization of complex and heterogeneous natural systems, 

such as AMD. Fuzzy logic allows the incorporation of qualitative information, for 

instance obtained through field observations, which is better described using natural 

language (Zadeh 1973, Demicco and Klir 2004). 

Considering that fuzzy logic provides powerful tools to capture the perception of natural 

phenomena it has been applied to a vast number of scientific domains. In geology, fuzzy 

logic has great potential and several works with broad scope can be cited (Demicco and 

Klir 2004, Fang and Chen 1990, Fang 1997 and Gedeon 2002). As examples of more 

specific approaches, Cameron et al. (2001), Mujumdar and Sasikumar (2002), Ratitsch 

(2000) e Schulz et al. (1999) purpose applications in the areas of geochemistry and 



hydrology. Aroba et al. (2007) have developed a computer tool based on fuzzy logic 

that allows the interpretation of the AMD process in Tinto and Odiel river estuary. 

In the present work, a min-max fuzzy inference system (Jang et al. 1997) is specified in 

order to classify the environmental impact on the riverine system affected by the AMD 

generated at Valdarcas mining site (Northern Portugal). Previous studies over the period 

1999 to 2004 put in evidence the existence of five spatial environments, which can be 

linked to distinctive contamination degrees (Valente 2004). Given that, the developed 

approach allows the classification of the water samples in one of these five classes of 

contamination. The classification procedure is complemented by the determination of a 

numeric index that reflects the respective contamination degree (AMD index).  

 

Valdarcas mining site 

 

Valdarcas mine is located in Northern Portugal, in a region where metal mining has a 

large and long tradition (Fig 1). It was exploited for tungsten in a skarn ore deposit, rich 

in sulphides, mainly pyrite, pyrrhotite and minus chalcopyrite and sphalerite. The most 

intensive works took place underground. The mine was closed in the beginning of the 

eighties and has left about 310000 m3 of sulphide-rich wastes, accumulated in three 

major impoundments. Marks of environmental impact persist nowadays, mainly due to 

the discharge of acidic effluents in a small stream (Poço Negro creek). These effluents 

emerge from the waste-dumps exposed to weathering processes, being the result of 

mineral-water interactions involving sulphide-rich wastes. Associated complex chain of 

biotic and abiotic reactions, generating AMD, has been the subject of extensive 

literature (Kwong and Lawrence 1994, Nordstrom and Southland 1997, Keith and 

Vaughan 2000). 



 

At Valdarcas, rainfall is the principal water supply for mineral-water interactions. As far 

as pluvial regimen is concerned, it is located in the rainiest region of Portugal. Monthly 

precipitation range from 625mm to 1455mm, values corresponding to the dry semester 

(from April to September) and to the wet semester (March to October), respectively. 

Average annual temperature is in the range between 10 and 12ºC.  

The acidic seepages and surface runoff from the waste-dumps are naturally conducted to 

the Poço Negro creek, which represents the main effluent channel, and then discharged 

in the Coura River. Waste-dumps were built without drainage control, which went far 

towards the strong physical instability. Consequently, the creek has maintained a very 

high sediment load that resulted from sulphide-wastes supply. During the period of 

February and September of 2007, an engineering rehabilitation project was conducted at 

the waste-dumps, in order to implement measures for erosion control. 

 

Methods 

This section presents the approach used to develop the fuzzy classifier and also includes 

the analytical procedures carried out to characterize water, alga and mineralogical 

samples. 

Sampling took place monthly over a two-year period (between January 2001 and 

December 2002). In addition, three single sampling campaigns were performed in 

February 2005, February 2007 and September 2007. Sampling stations include acidic 

seepages and surface runoff in the waste-dumps, as well as points along the main 

effluent channel (Poço Negro creek) (Fig 1).  

 



Water sampling and chemical analyses 

pH, electric conductivity (EC), redox potential (Eh) and temperature of the water were 

measured in the field with a multi-parameter meter (Orion, model 1230). The following 

Orion probes were used: combined pH/ATC electrode Triode ref. 91-07W, conductivity 

cell DuraProbe ref. 0133030 and a redox combination electrode ORP ref. 96.78.  

Laboratory analyses were performed for fluoride and chloride by ion chromatography 

(IC) with suppressed conductivity detection (761 Compact IC Metrohm). Sulphate was 

measured by turbidimetry and total acidity by volumetric determination (Standard 

methods for water analysis reference 4500E and 2310B, respectively). Inductively 

coupled plasma-atomic emission spectroscopy (ICP-AES) and atomic absorption 

spectroscopy (AAS) were used for metals. IC, ICP–AES and AAS analyses were 

preceded by sample filtration through 0.2μm pore-diameter cellulose ester membrane 

filters. For the analysis of metals, filtration was followed by acidification with HNO3 

65% suprapur Merck.  

 

Algae sampling and identification  

The algae were always collected at the same time of the day (early in the morning) 

and observed within 24h.  

Where benthic algae were macroscopically visible, biological material and the sediment 

on which they grow were collected. If algae were not visible, than effluent filtrates were 

qualitatively obtained and examined for the presence of suspended cells.  

Taxonomic identification was achieved by optical microscopy, based on morphological 

features and simple coloration tests (amide presence) (Round, 1975).  

 



Mineralogical sampling and analysis  

Mineralogical composition of the AMD precipitates was analysed by x-ray powder 

diffraction (XRD) with a Philips X’pert Pro-MPD difractometer, using Cu-Kα 

radiation. Sample preparation procedures and the appropriated XRD conditions for 

these kinds of samples, particular leading with low crystallinity and mineral mixtures, 

are described in Valente (2004). Scanning electron microscopy (on carbon or gold 

coated samples), with a LEICA S360 microscope, combined with an energy dispersive 

system (SEM-EDS), allowed the observation of morphological and compositional 

aspects of the supergenic mineralogical assemblages. 

 

Fuzzy logic – min-max fuzzy inference system 

Fuzzy logic can be summarized as a generalization of the classical set theory that was 

pioneered by Zadeh (1965). By Zadeh own words, “one of the principal objectives of 

fuzzy logic is formalization/mechanization of the remarkable human ability to reason 

and to make decisions in an environment of imprecision, uncertainty, partiality of 

information and partiality of truth” (Dumitras and Moschytz 2007). Contrary to the 

classical theory in which sets have crisp boundaries, in fuzzy logic a set has unsharp 

boundaries. This is an important concept since it better fits almost all real world sets 

(classes) and therefore is a better approach to model natural phenomena.  

A fuzzy set A, defined in the universe of discourse X, is any set that allows its members 

(x∈X) to have different grades of membership (membership function μA) in the interval 

[0, 1], equation 1.  

( ){ }XxxAxA ∈= )(, μ       (1) 



The membership functions are generally obtained through the parameterization of 

functions with simple geometric forms such as: Gaussian, PI and Bell functions. As an 

example of the application of membership functions, Fig. 2 shows the Bell function and 

a possible fuzzy modelling of an ecological indicator, expressed in a qualitative way, 

which represents the abundance of the alga Euglena mutabilis. In this context, 

“abundance of Euglena mutabilis“ is a linguistic or a fuzzy variable. Its representation 

was obtained adjusting by hand the parameters of the Bell function to best fit the field 

observations at the five environments that were defined at Valdarcas named as V7, 

ValdR, V3459, 05A and V216. 

The membership function μV216 is the one that best captures the meaning of the 

linguistic expression “very abundant Euglena mutabilis”. Therefore, according to this 

model, a field observation of “very abundant Euglena mutabilis” is attributed to the 

V216 environment.  

A fuzzy classifier is a fuzzy inference system that is based on this type of linguistic 

variables modulation and on operations on fuzzy sets. It formulates the mapping from a 

given input to an output, providing the basis from which decisions can be made or 

classes (patterns) discerned. The classifier developed in the present work is based on a 

min-max fuzzy inference system (Jang et al. 1997). It has a generalized application and 

uses the minimum and maximum operations on fuzzy sets.  

Fig. 3 exemplifies the application of the min-max fuzzy inference system to classify a 

pair of variables values (x,y) into the classes C1 or C2. Class C1 is defined by the pair 

of fuzzy sets {A1, B1} whereas class C2 is defined by the pair {A2, B2}. Given the pair 

(xi,yi) the min-max infers the grade of membership for each class in the following 

manner: 



• for each value xi and yi, it determines the grade of membership for the fuzzy sets 

A1, A2 and B1, B2 respectively, 

• for each class, C1 and C2, the minimum determines the lowest grade of 

membership b1 and a2, respectively, 

• the maximum operator gives now the highest (b1), 

• the pair (xi,yi) is classified as belonging to the class of the highest value, which 

means that it belongs to the class C1 with a grade of membership of b1. 

 

The AMD index is obtained through a weighted sum of the min values using a weight 

factor for each AMD-environment, which reflects the contamination degree. 

In fuzzy logic the value of the variables must be in the interval [0, 1], which implies a 

fuzzification procedure dependent on the data format and range.  

In the present work the quantitative variables (physical-chemical indicators) were 

submitted to logarithmic transformation (except the pH) followed by a normalization 

procedure according to equation (2). Subsequently a linear normalization to convert the 

values to the fuzzy universe was applied. 
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nx - normalized value  (2) 

As for the qualitative variables (ecological and mineralogical indicators) the universe of 

discourse was divided in several fuzzy sets whose purpose is to capture the meaning of 

the field observations and of the mineralogical analyses. All the indicators were 

modelled using the Bell function. In the case of ecological and mineralogical indicators 

the bell function parameters were adjusted manually. Regarding the physical-chemical 

indicators the parameters were adapted in order to approximate the membership 

function to the histogram of the respective indicator.  



General properties of the effluent 

The effluent can be described as an acid and rich-sulphate solution with high 

concentrations of iron, in special Fe(III), calcium, aluminium and manganese. In some 

samples chemical contamination is enhanced by high levels of arsenic, cooper, zinc and 

fluoride (raw data in annex). These chemical features constrain the ecological 

conditions, which results in a structurally simple ecosystem where only acidophilic 

algae grow. Euglena mutabilis and Klebsormidium sp. are the most well succeeded taxa, 

presenting the more persistent and densely populated communities.  

AMD at Valdarcas leads to the formation of supergenic minerals related to the chemical 

speciation of iron. In the group of the sulphate salts there are mainly efflorescences of 

gypsum, rozenite and melanterite. Regarding the ochre precipitates, they form mixtures 

of iron-oxyhydroxides with variable proportions of jarosite, goethite and 

schwertmannite. Jarosite occurs abundantly at the surface of the waste-dumps, being 

progressively replaced downstream, firstly by schwertmannite and then by goethite.  

Analytical characterization combined with field observations regarding the ecological 

and mineralogical properties, has revealed the presence of different patterns with spatial 

behaviour (Valente 2004, Valente et al 2007). These previous works put in evidence the 

existence of five AMD-environments that correspond to the grouping of sampling 

stations (Table I).  

 

Results and discussion 

The database used to develop and evaluate the fuzzy inference system results from the 

sampling program that was carried out between January 2001 and December 2002. The 



samples colleted in February 2005, February 2007 and September 2007 are used here to 

demonstrate the fuzzy model application and its effectiveness. 

The min-max fuzzy inference system will allow to classify a certain sample in one of 

the environments (V216, ValdR, 05A, V3459 and V7) and therefore to infer its 

contamination degree. For that, each environment represents a contamination class, 

taking in consideration that the extreme conditions are defined by:  

• ValdR – class of higher contamination, revealing the proximity to the 

environmental impact focus (waste-dumps). 

• V7 – class of minor contamination, revealing the spacing from the waste-dumps 

and the prevalence of natural attenuation of the environmental impact. 

In order to calculate the AMD index, each environment has been affected by a weight 

factor that intends to reflect the magnitude of the contamination. To ValdR corresponds 

the higher weight (0.9), while the lower is attributed to V7 (0.1); environments with 

intermediate contaminations – 05A, V3459, V216 – have weight factors of 0.3, 0.5 and 

0.7 respectively.  

The variables used as physical-chemical indicators are the following parameters: pH, 

EC, Eh, Acidity, SO4
2-, F-, Cl-

,
 Fe, Mn, Cu, Zn, As, Ca, K, Al, Na, SiO2, Mg. The 

ecological indicators are “abundance of Euglena mutabilis” and “abundance of 

Klebsormidium sp.”. “Supergenic iron mineral prevailing in the ochre mixtures” and 

“abundance of sulphate efflorescences” represent the used mineralogical indicators.  

Figs. 4, 5 and 6 show the fuzzy bell functions (fuzzy sets) for each AMD-environment, 

modelling the physical-chemical, ecological and mineralogical indicators, respectively.  

The analysis of the charts shows the spatial discrimination that corresponds to the 

AMD-environments in which specific mineral-water interaction phenomena prevails. 

The following can be summarised: 



• ValdR presents “very low” pH and “very high” concentration for chemical 

parameters, except sodium and potassium. Additionally, the modelling of the 

ecological parameters shows that both algae are “very rare” in this environment, 

as a consequence of toxic effects promoted by chemical contaminants. 

Contrarily, sulphate efflorescences are “very abundant” as well as the mineral 

jarosite (“very strong predominance of jarosite”). These properties are in 

accordance with the nature of the mineral-water interactions that occur in this 

environment. In fact, ValdR represents the result of slow water percolation in the 

interior of the waste-dumps. This allows the dissolution of silica and other 

chemical species, which are solubilised even from more stable minerals such as 

the silicates. This is the most oxidant environment and it is easily distinguished, 

since the generality of the pollutants presents the higher levels. The exceptions 

noted for sodium and potassium may be related with the strong precipitation of 

jarosite which retains efficiently these elements. The stability of jarosite 

relatively to goethite and schwertmannite is insured by the constant supply of 

acidic effluent from the interior of the waste-dumps and also resulting from the 

dissolution of the soluble sulphates which occur on the surface.  

• V216 presents high dispersion for the physical-chemical parameters, which may 

reflect the influence of aspects such as fluctuations in the pluvial regimen, runoff 

conditions and water residence time in the waste-dumps. Therefore it can be 

seen as a “shock” environment expressing the following conditions with 

diversified effects: physical instability of the waste-dumps promoting chemical 

reactivation of the sulphide wastes in the rainiest periods; acidity supply from 

the interior of waste-dumps; dilution observed in the longest rainy periods. The 

modelling of the ecological indicators shows a “very high abundance” of 



Euglena mutabilis. and “lower abundance” of Klebsormidium sp. Jarosite 

dominates the ochre mixtures (“strong predominance of jarosite”). Concerning 

sulphate efflorescences, V216 presents a high variety of situations (from “very 

rare” to “very abundant”) in agreement with the influence of diversified 

geochemical conditions.  

• V3459 displays an intermediate behaviour for the generality of the pollutants. 

Modelling of physical-chemical indicators reflects some dispersion between 

minimum and maximum values, however less significant than V216. Sulphate 

efflorescences are “very rare” and schwertmannite is the “most abundant” 

mineral in the ochre mixtures. Both acidophilic algae are “abundant”. The 

flatness in the modelling of the Euglena mutabilis indicator reflects the 

fluctuations in its abundance. These properties can be related to variations in 

hydraulic, ecological and geochemical conditions observed along the creek. The 

effect of dilution induces an increase in the pH values which promotes the 

instability of jarosite and its replacement for schwertmannite. Also the decrease 

in the content of the generality of pollutants, comparatively with ValdR, denotes 

the occurrence of processes of natural attenuation, such as precipitation of 

oxyhydroxides, metal adsorption and dilution of the acidic effluent. 

• 05A environment is well discriminated based on the behaviour of the qualitative 

indicators, both ecological and mineralogical. Here the Klebsormidium sp. is 

“very abundant”, being the richer environment concerning this alga. Its presence 

seems to be favoured by a combination of hydrologic, topographic and 

mineralogical conditions. This alga establishes mainly in flowing flat shallow 

water, growing on slightly loosely ferruginous substrates, where schwertmannite 

is “higher than” jarosite. These are the properties observed at the seepages 



occurring in the upper flat sections of the creek, where large amount of mining 

wastes are accumulated.  

• V7 presents the lowest dispersion for all indicators and in generally the lower 

level of pollutants. This may correspond to the effect of dilution, which has 

maximum expression in this environment, and to the attenuation processes that 

take place in the upstream environments. As a consequence of higher chemical 

stability, goethite is “higher than” schwertmannite and jarosite is “absent”. This 

mineralogical behaviour, noted in the ochre mixtures, is in agreement with the 

pH field stability for these minerals (Bigham et al. 1996). Lower contamination, 

especially in acidity, results in less favourable conditions to support acidophilic 

algae communities. Therefore Euglena mutabilis is “very rare” and 

Klebsormidium sp is “rare”. Although rare, Klebsormidium sp. persists better in 

this more distant environment, since it has a wide tolerance to lower levels of 

contamination. 

 

Application of the min-max fuzzy inference system 

When applied to a certain sample the min-max fuzzy inference system will respond with 

the sample classification in one of the AMD-environments, from which it is possible to 

infer the contamination degree. Table II demonstrates the application of the model to 

two samples extracted from the database - V603/02 and V902/07.  

Given the set of indicators that describes the AMD samples, the fuzzy model starts by 

determining the grade of membership for the different fuzzy sets. Then, min-max 

system classifies the samples as belonging to the AMD-environment that presents the 

maximum value. Therefore V603/02 belongs to the environment V216, with a grade of 



membership of 0.933, while V902/07 is also well classified, with a grade of 

membership of 0.853.  

V603/02 presents higher AMD index, reflecting a superior contamination degree due to 

the position of the respective sampling station at the waste-dumps surface. The AMD 

index for V902/07, by its turn, reflects already the occurrence of some dilution and 

other processes of natural attenuation, which is promoted by the distance to the waste-

dumps. 

Table III presents the classification result and the AMD index obtained for the samples 

collected in February 2005, February 2007 and September 2007. The samples from the 

campaigns carried out in February 2005 and February 2007 were classified as belonging 

to the environments in which they were effectively collected. On the contrary, the 

samples V709/07 and V409/07, colleted in September 2007, were classified as 

belonging to V3459 and V216 environments, respectively. In fact, in these two cases, 

the generality of the physical-chemical indicators are rather different from the average 

for the V7 and V3459 environments. The same happens with the ecological and 

mineralogical indicators. The presence of acidophilic algae and of the mineral 

schwertmannite at V7, in September 2007, denotes an increase in the contamination 

degree due to an extension of the effects of the AMD from the waste-dumps. Such 

increase is also highlighted in the AMD indexes. This result can be related to the 

rehabilitation project that took place at Valdarcas site between February and September. 

By itself, the engineering intervention was a focus of instability, once it has affected the 

thermodynamic equilibrium that was already established. For instance, the mobilization 

of the wastes and the movement of vehicles over the dump surfaces may have promoted 

the destruction of some supergenic mineralogical structures that encapsulate the 



sulphide minerals, protecting them from oxidation. Consequently, metals and acidity 

were released, creating more severe contamination in the aquatic system. 

The absence of an indicator does not make impossible the application of the model. This 

can be observed in one of the examples presented in table II. Sample V902/07 was well 

classified even without the Eh indicator. Missing parameters are removed from the 

model and the classification only fades away regarding those parameters. Nevertheless, 

it is possible to infer correctly the contamination degree using a restricted number of 

physical-chemical indicators, specifically the pH, EC, Sulphate, together with the 

ecological and mineralogical indicators.  

 

Conclusions 

Using a wide database resulting from two years of monthly monitoring, a fuzzy model 

to classify AMD samples and to infer the contamination degree through the calculus of 

a numeric index has been developed and evaluated.  

The developed approach was based on five distinctive environments, established by 

means of physical-chemical, ecological and mineralogical data, observed as the creek 

flows away from the waste-dumps. The application of fuzzy logic had the important 

advantage, comparatively with the classical modelling approaches, of easily allowing 

the aggregation of the quantitative and qualitative indicators. In that way, an intuitive 

field perception, for instance, related with the ecology and mineralogy of the system, 

can be incorporated in the model in order to better describe AMD and fulfil the 

characterization that results from numeric data about water quality. Another advantage 

is that the application of the model is not disabled when some indicators are missing. In 

that case, the classification procedure only weakens concerning the missing information. 



For future monitoring procedures the model can be used to evaluate the environmental 

impact related with the spreading of the AMD conditions. For instance, if a sample 

collected at V3459 or V7 is classified as belonging to a more contaminant environment 

then, it may be assumed that contamination is extended downstream. This probably will 

be reflecting instability processes at the waste-dumps, as it was demonstrated using the 

samples collected during rehabilitation project implemented in 2007. On the other hand, 

if a sample collected at V3459 is classified as V7, then this can be interpreted as a 

quality improvement, probably due to natural attenuation processes occurring upstream.  

The application of the model will also allow an appreciation about temporal evolution 

of this aquatic system. If future sampling gives a systematic predominance of V7 

classifications then the system is revealing a trend of AMD attenuation. Given that the 

fuzzy model can be applied in a long-term basis, allowing flexible and cost-effective 

environmental monitoring of Valdarcas mining site. It can also be a useful tool for 

monitoring purposes in other mining sites with similar AMD conditions.  
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Figure Captions  

 

Fig. 1 Location of Valdarcas mining site in Northern Portugal and sampling stations. 

Fig. 2 Bell function (a) and an example of its parameterization for the fuzzy variable “abundance of 

Euglena mutabilis“ (b). 

Fig. 3 Example of the application of the min-max fuzzy inference system. 

Fig. 4 Membership functions – fuzzy sets – used in the fuzzy model for physical-chemical indicators. 

μValdR, μV216, μ05A, μV3459 and μV7 are bell functions: bell(x; a,b,c), with a=maximum-minimum; 

b=1; c=average. 

Fig. 5 Membership functions – fuzzy sets – used in the fuzzy model for ecological indicators 

Fig. 6 Membership functions – fuzzy sets – used in the fuzzy model for mineralogical indicators 

 

 

 



 

 

Table I AMD-environments used in the fuzzy classifier. 

 

Sampling stations 
 

Description of the AMD-environment  

 

Designation of the AMD-

environment 
 

{V1,V2,V6} 
 

Surface runoff at the waste-dumps 
 

V216 
 

{ValdR} Seepages at the base of the waste-dumps 
 

ValdR 
 

{05A} 
 

Seepages at the upper section of the creek 
 

05A 
 

{V3,V4,V5,V9} 
 

Main effluent channel 
 

V3459 
 

{V7} 
 

Discharging point in the Coura river  
 

V7 

 



 

Table II Example of the application of the min-max fuzzy inference system.  

 Sample V603/02 AMD - Environment Sample V902/07 AMD - Environment 

Indicator Raw data 
Fuzzy 

Values 
μValdR μV216 μ05A μV3459 μV7 Raw data 

Fuzzy 

Values
μValdR μV216 μ05A μV3459 μV7 

pH 2.83 0.442 0.937 0.965 0.639 0.960 0.940 2.95 0.512 0.885 0.990 0.762 0.999 0.982 

EC(μS/cm) 883 0.367 0.611 0.989 0.976 0.911 0.999 1486 0.494 0.773 0.999 0.788 1.000 0.637 

Eh (mV) 486 0.836 0.993 0.974 0.966 0.999 0.943 -       

SO4
2- (mg/L) 222 0.323 0.549 0.973 0.985 0.818 0.887 779 0.509 0.787 0.999 0.861 1.000 0.562 

Acidity (mg/L 

CaCO3) 
215 0.353 0.309 0.983 0.996 0.868 0.997 635 0.541 0.551 0.997 0.788 0.998 0.636 

Fe (mg/L) 39.4 0.387 0.670 0.987 0.980 0.937 0.997 149 0.524 0.854 0.998 0.839 0.999 0.878 

Mn (mg/L) 1.24 0.028 0.800 0.933 0.499 0.630 0.275 14.9 0.349 0.985 0.859 0.923 0.999 0.654 

Cu (mg/L) 1.27 0.524 0.581 0.988 0.707 0.746 0.147 0.27 0.327 0.337 0.982 0.951 0.975 0.409 

Zn (mg/L) 0.16 0.269 0.658 0.997 0.975 0.919 0.786 0.50 0.417 0.815 0.975 0.954 0.996 0.331 

As (mg/L) 0.086 0.287 0.806 0.999 0.948 0.899 0.748 0.0063 0.000 0.578 0.875 0.927 0.987 0.991 

Ca (mg/L) 15.0 0.300 0.461 0.959 0.792 0.699 0.728 83.4 0.607 0.871 0.978 0.743 0.987 0.470 

K (mg/L) 1.00 0.000 0.986 0.948 0.976 0.794 0.925 1.82 0.290 0.937 0.997 0.847 0.979 0.860 

Al (mg/L) 6.86 0.181 0.762 0.989 0.926 0.819 0.488 39.3 0.345 0.913 0.963 0.871 0.993 0.543 

Na (mg/L) 2.51 0.519 0.994 0.999 0.765 0.906 0.124 7.85 0.859 0.770 0.911 0.913 0.992 0.493 

SiO2 (mg/L) 7.94 0.348 0.610 0.997 0.800 0.869 0.250 33.9 0.731 0.994 0.899 0.904 0.993 0.482 

Mg (mg/L) 1.74 0.224 0.535 0.992 0.911 0.829 0.068 11.3 0.576 0.906 0.895 0.749 0.989 0.097 

F- (mg/L) 4.10 0.350 0.590 0.998 1.000 0.949 0.997 3.10 0.316 0.551 0.992 0.993 0.911 0.891 

Cl- (mg/L) 4.98 0.675 0.980 1.000 0.963 0.984 0.674 11.0 0.943 0.957 0.913 0.892 0.961 0.606 

AEM 
Very 

Abundant 
0.95 0.000 0.997 0.044 0.880 0.000

Near  

abundant 
0.650 0.000 0.424 0.445 0.941 0.000 

AK Rare 0.254 0.000 1.000 0.137 0.305 0.171 Abundant 0.850 0.000 0.012 0.800 0.853 0.000 

SIM 
Jarosite+ 

Sch. 
0.174 0.903 1.000 0.672 0.371 0.001 Sch. 0.550 0.009 0.059 0.500 1.000 0.029 

ASE 
Midpoint  

abundance 
0.481 0.500 1.000 0.000 0.000 0.000

Very  

Rare 
0.000 0.015 0.500 1.000 1.000 1.000 

Minimum   0.000 0.933 0.000 0.000 0.000   0.000 0.012 0.445 0.853 0.000 

Maximum    0.933         0.853  

Classification    V216         V3459  

AMD Index    0.65         0.57  

AEM - Abundance of Euglena mutabilis; AK - Abundance of Klebsormidium sp.; SIM - Supergenic iron 

mineral prevailing in ochre mixtures; ASE - Abundance of sulphate efflorescences;  

Sch - Schwertmannite; “-“ indicator not determined. 



 

Table III Results of the fuzzy inference system for the 2005 and 2007 sampling campaigns.  

Sample 
Classification 

(AMD-Environment) 

AMD 

Index 

V402/05 V3459 0.50 

V902/05 V3459 0.56 

V702/05 V7 0.07 

ValdR02/07 ValdR 0.75 

V402/07 V3459 0.53 

V902/07 V3459 0.57 

V702/07 V7 0.05 

V409/07 V216 0.67 

V909/07 V3459 0.20 

V709/07 V3459 0.35 

 

 


