259 research outputs found
Titan's atmosphere as observed by Cassini/VIMS solar occultations: CH, CO and evidence for CH absorption
We present an analysis of the VIMS solar occultations dataset, which allows
us to extract vertically resolved information on the characteristics of Titan's
atmosphere between 100-700 km with a characteristic vertical resolution of 10
km. After a series of data treatment procedures, 4 occultations out of 10 are
retained. This sample covers different seasons and latitudes of Titan. The
transmittances show clearly the evolution of the haze and detect the detached
layer at 310 km in Sept. 2011 at mid-northern latitudes. Through the inversion
of the transmission spectra with a line-by-line radiative transfer code we
retrieve the vertical distribution of CH and CO mixing ratio. The two
methane bands at 1.4 and 1.7 {\mu}m are always in good agreement and yield an
average stratospheric abundance of %. This is significantly less
than the value of 1.48% obtained by the GCMS/Huygens instrument. The analysis
of the residual spectra after the inversion shows that there are additional
absorptions which affect a great part of the VIMS wavelength range. We
attribute many of these additional bands to gaseous ethane, whose near-infrared
spectrum is not well modeled yet. Ethane contributes significantly to the
strong absorption between 3.2-3.5 {\mu}m that was previously attributed only to
C-H stretching bands from aerosols. Ethane bands may affect the surface windows
too, especially at 2.7 {\mu}m. Other residual bands are generated by stretching
modes of C-H, C-C and C-N bonds. In addition to the C-H stretch from aliphatic
hydrocarbons at 3.4 {\mu}m, we detect a strong and narrow absorption at 3.28
{\mu}m which we tentatively attribute to the presence of PAHs in the
stratosphere. C-C and C-N stretching bands are possibly present between 4.3-4.5
{\mu}m. Finally, we obtain the CO mixing ratio between 70-170 km. The average
result of ppm is in good agreement with previous studies.Comment: 51 pages, 28 figure
Upper limits for undetected trace species in the stratosphere of Titan
In this paper we describe a first quantitative search for several molecules
in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia
(NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of
which are predicted by photochemical models but only the last of which
observed, and not in the infrared. We find non-detections in all cases, but
derive upper limits on the abundances from low-noise observations at 25{\deg}S
and 75{\deg}N. Comparing these constraints to model predictions, we conclude
that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and
H2CO are closer to CIRS detectability, and we suggest ways in which the
sensitivity threshold may be lowered towards this goal.Comment: 11 pages plus 6 figure file
A primordial origin for the atmospheric methane of Saturn's moon Titan
The origin of Titan's atmospheric methane is a key issue for understanding
the origin of the Saturnian satellite system. It has been proposed that
serpentinization reactions in Titan's interior could lead to the formation of
the observed methane. Meanwhile, alternative scenarios suggest that methane was
incorporated in Titan's planetesimals before its formation. Here, we point out
that serpentinization reactions in Titan's interior are not able to reproduce
the deuterium over hydrogen (D/H) ratio observed at present in methane in its
atmosphere, and would require a maximum D/H ratio in Titan's water ice 30%
lower than the value likely acquired by the satellite during its formation,
based on Cassini observations at Enceladus. Alternatively, production of
methane in Titan's interior via radiolytic reactions with water can be
envisaged but the associated production rates remain uncertain. On the other
hand, a mechanism that easily explains the presence of large amounts of methane
trapped in Titan in a way consistent with its measured atmospheric D/H ratio is
its direct capture in the satellite's planetesimals at the time of their
formation in the solar nebula. In this case, the mass of methane trapped in
Titan's interior can be up to 1,300 times the current mass of atmospheric
methane.Comment: Accepted for publication in Icaru
Detecting Venus’ volcanic gas plumes with VenSpec-H
International audienceThe VenSpec-H instrument is part of the EnVision payload which is currently being evaluated by ESA for mission selection. EnVision is a medium class mission to determine the nature and current state of geological activity on Venus, and its relationship with the atmosphere, to understand how Venus and Earth could have evolved so differently. VenSpec-H is part of the VenSpec suite [1], including also an IR mapper and a UV spectrometer [2] suite. The science objectives of this suite are to search for temporal variations in surface temperatures and tropospheric concentrations of volcanically emitted gases, indicative of volcanic eruptions; and study surface-atmosphere interactions and weathering by mapping surface emissivity and tropospheric gas abundances. Recent and perhaps ongoing volcanic activity has been inferred in data from both Venus Express an
Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus
The chemical regimes in the atmosphere of Venus vary from photochemistry in the middle atmosphere to thermal equilibrium chemistry in the lower atmosphere and the surface. Many chemical cycles have been proposed, but few details about these cycles are fully verified by comparison between observations and modeling. Recent high-quality data of carbonyl sulfide (OCS) and CO from ground-based and Venus Express observations provide a unique opportunity to test our understanding of chemistry and transport in the lower atmosphere of Venus. The spatial distributions of OCS and CO in the atmosphere reflect a sensitive balance between chemistry and transport. On the basis of our updated photochemical model and winds from Lee et al.'s (2007) general circulation model, we study the chemistry and transport in a simplified two-dimensional chemistry-transport model. OCS is produced by heterogeneous reactions on the surface; the middle atmosphere is a net sink for OCS. The combination of data and modeling provides strong evidence for the loss of OCS by conversion to CO. The detailed chemical mechanism is currently unknown, although a number of speculations have been proposed. The sensitivity of the distributions of OCS and CO to model parameters is reported
Mechanisms for the formation of benzene in the atmosphere of Titan
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95336/1/jgre1586.pd
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Access of energetic particles to Titan's exobase: a study of Cassini's T9 flyby
We study how the local electromagnetic disturbances introduced by Titan affect the ionization rates of the atmosphere. For this, we model the precipitation of energetic particles, specifically hydrogen and oxygen ions with energies between 1 keV and 1 MeV, into Titan's exobase for the specific magnetospheric configuration of the T9 flyby. For the study, a particle tracing software package is used which consists of an integration of the single particle Lorentz force equation using a 4th order Runge-Kutta numerical method. For the electromagnetic disturbances, the output of the A.I.K.E.F. hybrid code (kinetic ions, fluid electrons) is used, allowing the possibility of analyzing the disturbances and asymmetries in the access of energetic particles originated by their large gyroradii. By combining these methods, 2D maps showing the access of each set of particles were produced. We show that the access of different particles is largely dominated by their gyroradii, with the complexity of the maps increasing with decreasing gyroradius, due to the larger effect that local disturbances introduced by the presence of the moon have in the trajectory of the particles with lower energies. We also show that for particles with gyroradii much larger than the moon's radius, simpler descriptions of the electromagnetic environment can reproduce similar results to those obtained when using the full hybrid simulation description, with simple north-south fields being sufficient to reproduce the hybrid code results for O+ ions with energies larger than 10 keV but not enough to reproduce those for H+H+ ions at any of the energies covered in the present study. Finally, by combining the maps created with upstream plasma flow measurements by the MIMI/CHEMS instrument, we are able to estimate normalized fluxes arriving at different selected positions of the moon's exobase. We then use these fluxes to calculate energy deposition and non-dissociative N2 ionization rates for precipitating O+O+ and H+H+ ions and find differences in the ion production rates of up to almost 80% at the selected positions. All these results combined show that the electromagnetic field disturbances present in the vicinity of Titan significantly affect the contribution of energetic ions to local ionization profiles
Simultaneous, Multi-Wavelength Variability Characterization of the Free-Floating Planetary Mass Object PSO J318.5-22
We present simultaneous HST WFC3 + Spitzer IRAC variability monitoring for
the highly-variable young (20 Myr) planetary-mass object PSO J318.5-22.
Our simultaneous HST + Spitzer observations covered 2 rotation periods
with Spitzer and most of a rotation period with HST. We derive a period of
8.60.1 hours from the Spitzer lightcurve. Combining this period with the
measured for this object, we find an inclination of 56.2. We measure peak-to-trough variability amplitudes of
3.40.1 for Spitzer Channel 2 and 4.4 - 5.8 (typical 68
confidence errors of 0.3) in the near-IR bands (1.07-1.67 m)
covered by the WFC3 G141 prism -- the mid-IR variability amplitude for PSO
J318.5-22 one of the highest variability amplitudes measured in the mid-IR for
any brown dwarf or planetary mass object. Additionally, we detect phase offsets
ranging from 200--210 (typical error of 4) between
synthesized near-IR lightcurves and the Spitzer mid-IR lightcurve, likely
indicating depth-dependent longitudinal atmospheric structure in this
atmosphere. The detection of similar variability amplitudes in wide spectral
bands relative to absorption features suggests that the driver of the
variability may be inhomogeneous clouds (perhaps a patchy haze layer over thick
clouds), as opposed to hot spots or compositional inhomogeneities at the
top-of-atmosphere level.Comment: 48 pages, 22 figures, accepted to A
NEDA—NEutron Detector Array
The NEutron Detector Array, NEDA, will form the next generation neutron detection system that has been designed to be operated in conjunction with γ-ray arrays, such as the tracking-array AGATA, to aid nuclear spectroscopy studies. NEDA has been designed to be a versatile device, with high-detection efficiency, excellent neutron-γ discrimination, and high rate capabilities. It will be employed in physics campaigns in order to maximise the scientific output, making use of the different stable and radioactive ion beams available in Europe. The first implementation of the neutron detector array NEDA with AGATA 1π was realised at GANIL. This manuscript reviews the various aspects of NEDA
- …