799 research outputs found

    A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants.

    Get PDF
    Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort). Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands (discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were predominantly associated with nonsyndromic retinal degeneration ('retinal disease-specific'); these included the common c.2276 G>T, p.(Cys759Phe) mutation and five additional variants: c.2802 T>G, p.(Cys934Trp); c.10073 G>A, p.(Cys3358Tyr); c.11156 G>A, p.(Arg3719His); c.12295-3 T>A; and c.12575 G>A, p.(Arg4192His). An allelic hierarchy was observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The following model is proposed: the presence of at least one 'retinal disease-specific' USH2A allele in a patient with USH2A-related disease results in the preservation of normal hearing. Careful genotype-phenotype studies such as this will become increasingly important, especially now that high-throughput sequencing is widely used in the clinical setting.European Journal of Human Genetics advance online publication, 4 February 2015; doi:10.1038/ejhg.2014.283

    The differential hormonal milieu of morning versus evening, may have an impact on muscle hypertrophic potential

    Get PDF
    Substantial gains in muscle strength and hypertrophy are clearly associated with the routine performance of resistance training. What is less evident is the optimal timing of the resistance training stimulus to elicit these significant functional and structural skeletal muscle changes. Therefore, this investigation determined the impact of a single bout of resistance training performed either in the morning or evening upon acute anabolic signalling (insulin-like growth factor-binding protein-3 (IGFBP-3), myogenic index and differentiation) and catabolic processes (cortisol). Twenty-four male participants (age 21.4±1.9yrs, mass 83.7±13.7kg) with no sustained resistance training experience were allocated to a resistance exercise group (REP). Sixteen of the 24 participants were randomly selected to perform an additional non-exercising control group (CP) protocol. REP performed two bouts of resistance exercise (80% 1RM) in the morning (AM: 0800 hrs) and evening (PM: 1800 hrs), with the sessions separated by a minimum of 72 hours. Venous blood was collected immediately prior to, and 5 min after, each resistance exercise and control sessions. Serum cortisol and IGFBP-3 levels, myogenic index, myotube width, were determined at each sampling period. All data are reported as mean ± SEM, statistical significance was set at P≤0.05. As expected a significant reduction in evening cortisol concentration was observed at pre (AM: 98.4±10.5, PM: 49.8±4.4 ng/ml, P0.05). Timing of resistance training regimen in the evening appears to augment some markers of hypertrophic potential, with elevated IGFBP-3, suppressed cortisol and a superior cellular environment. Further investigation, to further elucidate the time course of peak anabolic signalling in morning vs evening training conditions, are timely

    Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms

    Get PDF
    Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10-36), SULT2A1 (rs2637125; p = 2.61×10-19), ARPC1A (rs740160; p = 1.56×10-16), TRIM4 (rs17277546; p = 4.50×10-11), BMF (rs7181230; p = 5.44×10-11), HHEX (rs2497306; p = 4.64×10-9), BCL2L11 (rs6738028; p = 1.72×10-8), and CYP2C9 (rs2185570; p = 2.29×10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS

    The short-term effect of high versus moderate protein intake on recovery after strength training in resistance-trained individuals

    Get PDF
    Background: Dietary protein intakes up to 2.9 g.kg-1.d-1 and protein consumption before and after resistance training may enhance recovery, resulting in hypertrophy and strength gains. However, it remains unclear whether protein quantity or nutrient timing is central to positive adaptations. This study investigated the effect of total dietary protein content, whilst controlling for protein timing, on recovery in resistance trainees. Methods: Fourteen resistance-trained individuals underwent two 10-day isocaloric dietary regimes with a protein content of 1.8 g.kg-1.d-1 (PROMOD) or 2.9 g.kg-1.d-1 (PROHIGH) in a randomised, counterbalanced, crossover design. On days 8-10 (T1-T3), participants undertook resistance exercise under controlled conditions, performing 3 sets of squat, bench press and bent-over rows at 80% 1 repetition maximum until volitional exhaustion. Additionally, participants consumed a 0.4 g.kg-1 whey protein concentrate/isolate mix 30 minutes before and after exercise sessions to standardise protein timing specific to training. Recovery was assessed via daily repetition performance, muscle soreness, bioelectrical impedance phase angle, plasma creatine kinase (CK) and tumor necrosis factor-α (TNF-α). Results: No significant differences were reported between conditions for any of the performance repetition count variables (p>0.05). However, within PROMOD only, squat performance total repetition count was significantly lower at T3 (19.7 ± 6.8) compared to T1 (23.0 ± 7.5; p=0.006). Pre and post-exercise CK concentrations significantly increased across test days (p≤0.003), although no differences were reported between conditions. No differences for TNF-α or muscle soreness were reported between dietary conditions. Phase angle was significantly greater at T3 for PROHIGH (8.26 ± 0.82°) compared with PROMOD (8.08 ± 0.80°; p=0.012). Conclusions: When energy intake and peri-exercise protein intake was controlled for, a short term PROHIGH diet did not improve markers of muscle damage or soreness in comparison to a PROMOD approach following repeated days of intensive training. Whilst it is therefore likely that protein intakes (1.8g.kg-1.d-1) may be sufficient for resistance-trained individuals, it is noteworthy that both lower body exercise performance and bioelectrical phase angle were maintained with PROHIGH. Longer term interventions are warranted to determine whether PROMOD intakes are sufficient during prolonged training periods or when extensive exercise (e.g. training twice daily) is undertaken

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    A randomised feasibility study of EPA and Cox-2 inhibitor (Celebrex) versus EPA, Cox-2 inhibitor (Celebrex), Resistance Training followed by ingestion of essential amino acids high in leucine in NSCLC cachectic patients - ACCeRT Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer cachexia is a syndrome of progressive weight loss. Non-small cell lung cancer patients experience a high incidence of cachexia of 61%. Research into methods to combat cancer cachexia in various tumour sites has recently progressed to the combination of agents.</p> <p>The combination of the anti-cachectic agent Eicosapentaenoic acid (EPA) and the cyclo-oxygenase-2 (COX-2) inhibitor celecoxib has been tested in a small study with some benefit. The use of progressive resistance training (PRT) followed by the oral ingestion of essential amino acids (EAA), have shown to be anabolic on skeletal muscle and acceptable in older adults and other cancer groups.</p> <p>The aim of this feasibility study is to evaluate whether a multi-targeted approach encompassing a resistance training and nutritional supplementation element is acceptable for lung cancer patients experiencing cancer cachexia.</p> <p>Methods/Design</p> <p>Auckland's Cancer Cachexia evaluating Resistance Training (ACCeRT) is an open label, prospective, randomised controlled feasibility study with two parallel arms. All patients will be treated with EPA and the COX-2 inhibitor celecoxib on an outpatient basis at the study site. In the experimental group patients will participate in PRT twice a week, followed by the ingestion of essential amino acids high in leucine. A total of 21 patients are planned to be enrolled. Patients will be randomised using 1:2 ratio with 7 patients enrolled into the control arm, and 14 patients into the treatment arm. The primary endpoint is the acceptability of the above multi-targeted approach, determined by an acceptability questionnaire.</p> <p>Discussion</p> <p>To our knowledge ACCeRT offers for the first time the opportunity to investigate the effect of stimulating the anabolic skeletal muscle pathway with the use of PRT along with EAA alongside the combination of EPA and celecoxib in this population.</p> <p>Trial registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2040">ACTRN12611000870954</a></p

    Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model.</p> <p>Methods</p> <p>In anesthetized pigs (42-53 kg), a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8) or saline (9 mg/ml, n = 8). Area at risk (AAR) was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis.</p> <p>Results</p> <p>ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007). Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23). The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data.</p> <p>Conclusions</p> <p>ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.</p

    Creatine Monohydrate and Conjugated Linoleic Acid Improve Strength and Body Composition Following Resistance Exercise in Older Adults

    Get PDF
    Aging is associated with lower muscle mass and an increase in body fat. We examined whether creatine monohydrate (CrM) and conjugated linoleic acid (CLA) could enhance strength gains and improve body composition (i.e., increase fat-free mass (FFM); decrease body fat) following resistance exercise training in older adults (>65 y). Men (N = 19) and women (N = 20) completed six months of resistance exercise training with CrM (5g/d)+CLA (6g/d) or placebo with randomized, double blind, allocation. Outcomes included: strength and muscular endurance, functional tasks, body composition (DEXA scan), blood tests (lipids, liver function, CK, glucose, systemic inflammation markers (IL-6, C-reactive protein)), urinary markers of compliance (creatine/creatinine), oxidative stress (8-OH-2dG, 8-isoP) and bone resorption (Ν-telopeptides). Exercise training improved all measurements of functional capacity (P<0.05) and strength (P<0.001), with greater improvement for the CrM+CLA group in most measurements of muscular endurance, isokinetic knee extension strength, FFM, and lower fat mass (P<0.05). Plasma creatinine (P<0.05), but not creatinine clearance, increased for CrM+CLA, with no changes in serum CK activity or liver function tests. Together, this data confirms that supervised resistance exercise training is safe and effective for increasing strength in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six-month period. Trial Registration. ClinicalTrials.gov NCT0047390
    corecore