47 research outputs found

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Expanding The Genetic Code

    Get PDF
    Karsten L, Bergen D, Drake C, et al. Expanding The Genetic Code. Bielefeld University; 2017.We worked in many different scientific fields to find suitable ways for the translational incorporate of non-canonical amino acids into proteins. Repurposing existing codons or incorporating new bases are two possible ways. We realized both ways to expand the genetic code of Escherichia coli. The repurposing of a codon for the incorporation of a non-canonical amino acid (ncAA) is possible using the rarely used amber stop codon UAG or other rarely used codons like the leucine codon CUA. To incorporate a non-canonical amino acid using these codons, an orthogonal tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair is necessary, which can charge the ncAA to the tRNA. We designed and synthetized the novel ncAA Nγ‑2‑cyanobenzothiazol‑6‑yl‑L‑asparagine (CBT-asparagine). This ncAA has the chemical ability of perform a highly specific covalent binding reaction, which we wanted to incorporate into our target protein. Therefore, we created a library of aaRS with random mutagenized amino acid binding sites and a selection system to select for the aaRS that specifically incorporates the ncAA. In parallel to the libary and selection based approach, we modeled the aaRS which could incorporate our new amino acid CBT-asparagine. We demonstrated that both ways are suitable for the evolution of aaRS. Although incorporation of ncAAs through the amber codon works, there are challenges associated with this approach. The repurposing of codons leads to the decrease of the growth rate of E. coli and it is only feasible to incorporate up to two different ncAAs. Therefore, we took a new way to incorporate ncAAs. The incorporation of an unnatural base pair into the DNA generates 64 new codons. Our first challenge was the uptake of the unnatural base from the media, because E.coli has no nucleoside triphosphate transporter and is not able to synthetize the bases itself. We cloned a nucleoside triphosphate transporter that enables the uptake of both bases from the media. Furthermore, we analyzed the transcriptome of the plant Croton tiglium, which produces the unnatural base isoG. The transcriptome revealed an enzyme for the biosynthesis, which was cloned and characterized for the biosynthesis of isoG in E. coli. To detect the unnatural base we developed two orthogonal systems. A restriction experiment based on the software tool M.A.X. and an adaption of the Oxford Nanopore sequencing, which were combined into one software suite. To demonstrate the possibilities offered by the incorporation of ncAAs, we developed a toolbox containing five different tools. We chose seven different ncAAs for these five tools and demonstrated interesting applications for them. These ncAAs can be used for various approaches in basic research, medicine and manufacturing. Furthermore, with our submitted parts, every iGEM team can incorporate these ncAAs into their target proteins. Regarding our project, two of the ncAAs that are part of our toolbox perform an autocatalytic reaction upon irradiation with ultraviolet light. Therefore, we decided to build our own LED panel that allows us to perform experiments with these non‑canonical amino acids under reproducible irradiation conditions

    Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases

    Get PDF
    Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation (N = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network. We confirmed in vitro that knockdown of IKZF1 decreases the expression of fucosyltransferase FUT8, resulting in increased levels of fucosylated glycans, and suggest that RUNX1 and RUNX3, together with SMARCB1, regulate expression of glycosyltransferase MGAT3. We also show that variants affecting the expression of genes involved in the regulation of glycoenzymes colocalize with variants affecting risk for inflammatory diseases. This study provides new evidence that variation in key transcription factors coupled with regulatory variation in glycogenes modifies IgG glycosylation and has influence on inflammatory diseases

    Cheek Tooth Morphology and Ancient Mitochondrial DNA of Late Pleistocene Horses from the Western Interior of North America: Implications for the Taxonomy of North American Late Pleistocene Equus

    Get PDF
    Horses were a dominant component of North American Pleistocene land mammal communities and their remains are well represented in the fossil record. Despite the abundant material available for study, there is still considerable disagreement over the number of species of Equus that inhabited the different regions of the continent and on their taxonomic nomenclature. In this study, we investigated cheek tooth morphology and ancient mtDNA of late Pleistocene Equus specimens from the Western Interior of North America, with the objective of clarifying the species that lived in this region prior to the end-Pleistocene extinction. Based on the morphological and molecular data analyzed, a caballine (Equus ferus) and a non-caballine (E. conversidens) species were identified from different localities across most of the Western Interior. A second non-caballine species (E. cedralensis) was recognized from southern localities based exclusively on the morphological analyses of the cheek teeth. Notably the separation into caballine and non-caballine species was observed in the Bayesian phylogenetic analysis of ancient mtDNA as well as in the geometric morphometric analyses of the upper and lower premolars. Teeth morphologically identified as E. conversidens that yielded ancient mtDNA fall within the New World stilt-legged clade recognized in previous studies and this is the name we apply to this group. Geographic variation in morphology in the caballine species is indicated by statistically different occlusal enamel patterns in the specimens from Bluefish Caves, Yukon Territory, relative to the specimens from the other geographic regions. Whether this represents ecomorphological variation and/or a certain degree of geographic and genetic isolation of these Arctic populations requires further study

    Pathway-based subnetworks enable cross-disease biomarker discovery.

    Get PDF
    Biomarkers lie at the heart of precision medicine. Surprisingly, while rapid genomic profiling is becoming ubiquitous, the development of biomarkers usually involves the application of bespoke techniques that cannot be directly applied to other datasets. There is an urgent need for a systematic methodology to create biologically-interpretable molecular models that robustly predict key phenotypes. Here we present SIMMS (Subnetwork Integration for Multi-Modal Signatures): an algorithm that fragments pathways into functional modules and uses these to predict phenotypes. We apply SIMMS to multiple data types across five diseases, and in each it reproducibly identifies known and novel subtypes, and makes superior predictions to the best bespoke approaches. To demonstrate its ability on a new dataset, we profile 33 genes/nodes of the PI3K pathway in 1734 FFPE breast tumors and create a four-subnetwork prediction model. This model out-performs a clinically-validated molecular test in an independent cohort of 1742 patients. SIMMS is generic and enables systematic data integration for robust biomarker discovery

    Homozygous loss-of-function variants in European cosmopolitan and isolate populations

    Get PDF
    Homozygous Loss of Function (HLOF) variants provide a valuable window on gene function in humans, as well as an inventory of the human genes that are not essential for survival and reproduction. All humans carry at least a few HLOF variants, but the exact number of inactivated genes that can be tolerated is currently unknown - as are the phenotypic effects of losing function for most human genes. Here, we make use of 1,432 whole exome sequences from five European populations to expand the catalogue of known human HLOF mutations; after stringent filtering of variants in our dataset, we identify a total of 173 HLOF mutations, 76 (44%) of which have not been observed previously. We find that population isolates are particularly well suited to surveys of novel HLOF genes because individuals in such populations carry extensive runs of homozygosity, which we show are enriched for novel, rare HLOF variants. Further, we make use of extensive phenotypic data to show that most HLOFs, ascertained in population-based samples, appear to have little detectable effect on the phenotype. On the contrary, we document several genes directly implicated in disease that seem to tolerate HLOF variants. Overall HLOF genes are enriched for olfactory receptor function and are expressed in testes more often than expected, consistent with reduced purifying selection and incipient pseudogenisation

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
    corecore