22 research outputs found
Interplay between actomyosin and E-cadherin dynamics regulates cell shape in the Drosophila embryonic epidermis
Precise regulation of cell shape is vital for building functional tissues. Here, we study the mechanisms which lead to the formation of highly elongated anisotropic epithelial cells in the Drosophila epidermis. We demonstrate that this cell shape is the result of two counteracting mechanisms at the cell surface which regulate the degree of elongation: actomyosin, which inhibits cell elongation downstream of RhoA signalling, and intercellular adhesion, modulated via clathrin-mediated endocytosis of E-cadherin, which promotes cell elongation downstream of the GTPase Arf1. We show that these two mechanisms do not act independently but are interconnected, with RhoA signalling reducing Arf1 recruitment to the plasma membrane. Additionally, cell adhesion itself regulates both mechanisms: p120-catenin, a regulator of intercellular adhesion, promotes the activity of both Arf1 and RhoA. Altogether, we uncover a complex network of interactions between cell-cell adhesion, the endocytic machinery, and the actomyosin cortex, and demonstrate how this network regulates cell shape in an epithelial tissue in vivo
Drosophila Kette coordinates myoblast junction dissolution and the ratio of Scar-to-WASp during myoblast fusion
The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell-cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs
H3K79 methylation: a new conserved mark that accompanies H4 hyperacetylation prior to histone-to-protamine transition in Drosophila and rat
During spermiogenesis, haploid spermatids undergo extensive chromatin remodeling events in which histones are successively replaced by more basic protamines to generate highly compacted chromatin. Here we show for the first time that H3K79 methylation is a conserved feature preceding the histone-to-protamine transition in Drosophila melanogaster and rat. During Drosophila spermatogenesis, the Dot1-like methyltransferase Grappa (Gpp) is primarily expressed in canoe stage nuclei. The corresponding H3K79 methylation is a histone modification that precedes the histone-to-protamine transition and correlates with histone H4 hyperacetylation. When acetylation was inhibited in cultured Drosophila testes, nuclei were smaller and chromatin was compact, Gpp was little synthesized, H3K79 methylation was strongly reduced, and protamines were not synthesized. The Gpp isoform Gpp-D has a unique C-terminus, and Gpp is essential for full fertility. In rat, H3K79 methylation also correlates with H4 hyperacetylation but not with active RNA polymerase II, which might point towards a conserved function in chromatin remodeling during the histone-to-protamine transition in both Drosophila and rat
SLY regulates genes involved in chromatin remodeling and interacts with TBL1XR1 during sperm differentiation
International audienc