1,145 research outputs found

    Seismic source functions and attenuation from local and teleseismic observations of the NTS events Jorum and Handley

    Get PDF
    Several strong-motion seismograms recorded at 8 km from a large nuclear test at Pahute Mesa, Nevada Test Site, are modeled using the Cagniard-de Hoop technique. The ratio of vertical to radial motions suggest that the peak values are produced by ray paths that penetrated to a depth several kilometers below the source. A homogeneous layered Earth model with velocity increasing with depth was used in the modeling of the velocity time histories. The upper portion of the velocity model was determined by averaging bore-hole data and the lower portion was obtained from regional refraction measurements. Assuming a modified Haskell (1967) source representation, ψ(t) = ψ_o[1 - e^(-Kt)(1 + Kt (Kt)^2/2 - B(Kt)^3)] we obtain a range of source descriptions with ψ_o varying with K and B, ψ_o (K,B). The range of source models for Jorum are ψ_o (5, 1) = 3.1, ψ_o (5, 2) = 1.7, and ψ_o (5, 3) = 1.2 times 10^(11) cm^3, respectively. Given an explosion source description, it is a straightforward task to determine the teleseismic attenuation from WWSSN observations. From both the short- and long-period observations from these events, an average t^* of 1.3 is obtained for compressional waves of a dominant 1-sec period. This estimate is insensitive to the range of K and B obtained from the near-field modeling

    Simulation of strong ground motions

    Get PDF
    The estimation of potential strong ground motions at short epicentral distances (Δ = 10 to 25 km) resulting from large earthquakes, M ≧ 6.5, generally requires extrapolation of a limited data set. The goal of this project has been to quantify the extrapolation through a simulation technique that relies heavily upon the more extensive data set from smaller magnitude earthquakes. The simulation utilizes the smaller events as Green's functions for the elements of a larger fault. Comparison of the simulated peak acceleration and duration with the data from the Parkfield earthquake is very good. Simulation of three earthquakes, M = 5.5, 6.5, and 7.0 indicate that the slope of the peak acceleration versus distance curve (Δ = 5 to 25 km) flattens, for strike-slip earthquakes, as the magnitude increases

    Peak acceleration scaling studies

    Get PDF
    An acceleration time history can be decomposed into a series of operations that transfers energy from each point on the fault to the recording station ACC(t) = S * R * E * Q where S is the source time function, R represents rupture over a finite fault, E is the elastic propagation through the earth, and Q is the path attenuation, assumed to be linear. If these operators were exactly known, a deterministic approach to predicting strong ground motions would be straightforward. For the current study, E was computed from a velocity model that incorporates a stiff sedimentary layer over a southern California crust. A range of realistic rupture velocities have been obtained by other investigators and is incorporated into the simulation. Assumptions of the path averaged attenuation, Q, can be tested by comparing with observational data, as a function of distance, the parameters peak acceleration, and computed M_L. This provides a check on both the high frequency (∼ 5 Hz) and long-period (∼ 1 sec) behavior of E^* Q. An average curstal shear wave Q_β of 300 is found to be compatible with observational data (M_L = 4.5 to 5.0). Assumptions of S can be avoided by using real sources derived from accelerograms recorded at small epicentral distances (epicentral distance/source depth < 1). Using these operators, accelerograms have been simulated for strike-slip faulting for four magnitudes: 4.5; 5.5; 6.5; and 7.0. The shapes of the derived average peak ground acceleration (PGA) versus distance curves are well described by the simple equation PGA α [R + C(M)]^(−1.75), where R is the closest distance to the fault surface and C(4.5) = 6, C(5.5) = 12, C(6.5) = 22, and C(7.0) = 36 km

    Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra

    Get PDF
    We describe a novel magnetic resonance imaging technique for detecting metabolism indirectly through changes in oxyhemoglobin:deoxyhemoglobin ratios and T2* signal change during ‘oxygen challenge’ (OC, 5 mins 100% O2). During OC, T2* increase reflects O2 binding to deoxyhemoglobin, which is formed when metabolizing tissues take up oxygen. Here OC has been applied to identify tissue metabolism within the ischemic brain. Permanent middle cerebral artery occlusion was induced in rats. In series 1 scanning (n=5), diffusion-weighted imaging (DWI) was performed, followed by echo-planar T2* acquired during OC and perfusion-weighted imaging (PWI, arterial spin labeling). Oxygen challenge induced a T2* signal increase of 1.8%, 3.7%, and 0.24% in the contralateral cortex, ipsilateral cortex within the PWI/DWI mismatch zone, and ischemic core, respectively. T2* and apparent diffusion coefficient (ADC) map coregistration revealed that the T2* signal increase extended into the ADC lesion (3.4%). In series 2 (n=5), FLASH T2* and ADC maps coregistered with histology revealed a T2* signal increase of 4.9% in the histologically defined border zone (55% normal neuronal morphology, located within the ADC lesion boundary) compared with a 0.7% increase in the cortical ischemic core (92% neuronal ischemic cell change, core ADC lesion). Oxygen challenge has potential clinical utility and, by distinguishing metabolically active and inactive tissues within hypoperfused regions, could provide a more precise assessment of penumbra

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at &#8730;s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|&#60;2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of √s=7 TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
    corecore