268 research outputs found
Non-Markovian homodyne-mediated feedback on a two-level atom: a quantum trajectory treatment
Quantum feedback can stabilize a two-level atom against decoherence
(spontaneous emission), putting it into an arbitrary (specified) pure state.
This requires perfect homodyne detection of the atomic emission, and
instantaneous feedback. Inefficient detection was considered previously by two
of us. Here we allow for a non-zero delay time in the feedback circuit.
Because a two-level atom is a nonlinear optical system, an analytical solution
is not possible. However, quantum trajectories allow a simple numerical
simulation of the resulting non-Markovian process. We find the effect of the
time delay to be qualitatively similar to that of inefficient detection. The
solution of the non-Markovian quantum trajectory will not remain fixed, so that
the time-averaged state will be mixed, not pure. In the case where one tries to
stabilize the atom in the excited state, an approximate analytical solution to
the quantum trajectory is possible. The result, that the purity () of the average state is given by (where
is the spontaneous emission rate) is found to agree very well with the
numerical results.Comment: Changed content, Added references and Corrected typo
Sensitivity optimization in quantum parameter estimation
We present a general framework for sensitivity optimization in quantum
parameter estimation schemes based on continuous (indirect) observation of a
dynamical system. As an illustrative example, we analyze the canonical scenario
of monitoring the position of a free mass or harmonic oscillator to detect weak
classical forces. We show that our framework allows the consideration of
sensitivity scheduling as well as estimation strategies for non-stationary
signals, leading us to propose corresponding generalizations of the Standard
Quantum Limit for force detection.Comment: 15 pages, RevTe
Feedback cooling of a nanomechanical resonator
Cooled, low-loss nanomechanical resonators offer the prospect of directly
observing the quantum dynamics of mesoscopic systems. However, the present
state of the art requires cooling down to the milliKelvin regime in order to
observe quantum effects. Here we present an active feedback strategy based on
continuous observation of the resonator position for the purpose of obtaining
these low temperatures. In addition, we apply this to an experimentally
realizable configuration, where the position monitoring is carried out by a
single-electron transistor. Our estimates indicate that with current technology
this technique is likely to bring the required low temperatures within reach.Comment: 10 pages, RevTex4, 4 color eps figure
Supporting resource-based analysis of task information needs
We investigate here an approach to modelling the dynamic information requirements of a user performing a number of tasks, addressing both the provision and representation of information, viewing the information as being distributed across a set of resources. From knowledge of available resources at the user interface, and task information needs we can identify whether the system provides the user with adequate support for task execution. We look at how we can use tools to help reason about these issues, and illustrate their use through an example.We also consider a full range of analyses suggested using this approach which could potentially be supported by automated reasoning systems.(undefined
Continuous Quantum Measurement and the Quantum to Classical Transition
While ultimately they are described by quantum mechanics, macroscopic
mechanical systems are nevertheless observed to follow the trajectories
predicted by classical mechanics. Hence, in the regime defining macroscopic
physics, the trajectories of the correct classical motion must emerge from
quantum mechanics, a process referred to as the quantum to classical
transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys.
Rev. Lett. {\bf 85}, 4852 (2000)], here we elucidate this transition in some
detail, showing that once the measurement processes which affect all
macroscopic systems are taken into account, quantum mechanics indeed predicts
the emergence of classical motion. We derive inequalities that describe the
parameter regime in which classical motion is obtained, and provide numerical
examples. We also demonstrate two further important properties of the classical
limit. First, that multiple observers all agree on the motion of an object, and
second, that classical statistical inference may be used to correctly track the
classical motion.Comment: 12 pages, 4 figures, Revtex
Mirror quiescence and high-sensitivity position measurements with feedback
We present a detailed study of how phase-sensitive feedback schemes can be
used to improve the performance of optomechanical devices. Considering the case
of a cavity mode coupled to an oscillating mirror by the radiation pressure, we
show how feedback can be used to reduce the position noise spectrum of the
mirror, cool it to its quantum ground state, or achieve position squeezing.
Then, we show that even though feedback is not able to improve the sensitivity
of stationary position spectral measurements, it is possible to design a
nonstationary strategy able to increase this sensitivity.Comment: 25 pages, 11 figure
Realistic simulations of single-spin nondemolition measurement by magnetic resonance force microscopy
A requirement for many quantum computation schemes is the ability to measure
single spins. This paper examines one proposed scheme: magnetic resonance force
microscopy, including the effects of thermal noise and back-action from
monitoring. We derive a simplified equation using the adiabatic approximation,
and produce a stochastic pure state unraveling which is useful for numerical
simulations.Comment: 33 pages LaTeX, 9 figure files in EPS format. Submitted to Physical
Review
Feedback-control of quantum systems using continuous state-estimation
We present a formulation of feedback in quantum systems in which the best
estimates of the dynamical variables are obtained continuously from the
measurement record, and fed back to control the system. We apply this method to
the problem of cooling and confining a single quantum degree of freedom, and
compare it to current schemes in which the measurement signal is fed back
directly in the manner usually considered in existing treatments of quantum
feedback. Direct feedback may be combined with feedback by estimation, and the
resulting combination, performed on a linear system, is closely analogous to
classical LQG control theory with residual feedback.Comment: 12 pages, multicol revtex, revised and extende
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …