32 research outputs found
Performance Testing of a Novel Off-plane Reflection Grating and Silicon Pore Optic Spectrograph at PANTER
An X-ray spectrograph consisting of radially ruled off-plane reflection
gratings and silicon pore optics was tested at the Max Planck Institute for
extraterrestrial Physics PANTER X-ray test facility. The silicon pore optic
(SPO) stack used is a test module for the Arcus small explorer mission, which
will also feature aligned off-plane reflection gratings. This test is the first
time two off-plane gratings were actively aligned to each other and with a SPO
to produce an overlapped spectrum. The gratings were aligned using an active
alignment module which allows for the independent manipulation of subsequent
gratings to a reference grating in three degrees of freedom using picomotor
actuators which are controllable external to the test chamber. We report the
line spread functions of the spectrograph and the actively aligned gratings,
and plans for future development.Comment: Draft Version March 19, 201
On the Origins of the High-Latitude H-alpha Background
The diffuse high-latitude H-alpha background is widely believed to be
predominantly the result of in-situ recombination of ionized hydrogen in the
warm interstellar medium of the Galaxy. Instead, we show that both a
substantial fraction of the diffuse high-latitude H-alpha intensity in regions
dominated by Galactic cirrus dust and much of the variance in the high-latitude
H-alpha background are the result of scattering by interstellar dust of H-alpha
photons originating elsewhere in the Galaxy. We provide an empirical relation,
which relates the expected scattered H-alpha intensity to the IRAS 100um
diffuse background intensity, applicable to about 81% of the entire sky. The
assumption commonly made in reductions of CMB observations, namely that the
observed all-sky map of diffuse H-alpha light is a suitable template for
Galactic free-free foreground emission, is found to be in need of
reexamination.Comment: 26 pages, 5 figures, Accepted for publication in Ap
Performance Testing of a Large-Format Reflection Grating Prototype for a Suborbital Rocket Payload
The soft X-ray grating spectrometer on board the Off-plane Grating Rocket
Experiment (OGRE) hopes to achieve the highest resolution soft X-ray spectrum
of an astrophysical object when it is launched via suborbital rocket. Paramount
to the success of the spectrometer are the performance of the reflection
gratings populating its reflection grating assembly. To test current grating
fabrication capabilities, a grating prototype for the payload was fabricated
via electron-beam lithography at The Pennsylvania State University's Materials
Research Institute and was subsequently tested for performance at Max Planck
Institute for Extraterrestrial Physics' PANTER X-ray Test Facility. Bayesian
modeling of the resulting data via Markov chain Monte Carlo (MCMC) sampling
indicated that the grating achieved the OGRE single-grating resolution
requirement of at the 94% confidence level.
The resulting posterior probability distribution suggests that this
confidence level is likely a conservative estimate though, since only a finite
parameter space was sampled and the model could not constrain the upper
bound of to less than infinity. Raytrace simulations of the system found
that the observed data can be reproduced with a grating performing at
. It is therefore postulated that the behavior of the obtained
posterior probability distribution can be explained by a finite
measurement limit of the system and not a finite limit on . Implications
of these results and improvements to the test setup are discussed.Comment: 25 pages, 16 figures, preprint of an article accepted for publication
in the Journal of Astronomical Instrumentation \copyright 2020 [copyright
World Scientific Publishing Company]
[https://www.worldscientific.com/worldscinet/jai
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor
Tamoxifen has been used for many years to target estrogen receptor signalling in breast cancer cells. Tamoxifen is also an agonist of the G protein-coupled estrogen receptor (GPER), a GPCR ubiquitously expressed in tissues that mediates the acute response to estrogens. Here we report that tamoxifen promotes mechanical quiescence in hepatic stellate cells (HSCs), stromal fibroblast-like cells whose activation triggers and perpetuates liver fibrosis in hepatocellular carcinomas. This mechanical deactivation is mediated by the GPER/RhoA/myosin axis and induces YAP deactivation. We report that tamoxifen decreases the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and the synthesis of extracellular matrix proteins through a mechanical mechanism that involves actomyosin-dependent contractility and mechanosensing of tissue stiffness. Our results implicate GPER-mediated estrogen signalling in the mechanosensory-driven activation of HSCs and put forward estrogenic signalling as an option for mechanical reprogramming of myofibroblast-like cells in the tumour microenvironment. Tamoxifen, with half a century of safe clinical use, might lead this strategy of drug repositioning.Peer reviewe
Comprehensive overview of the structure and regulation of the glucocorticoid receptor
Glucocorticoids are among the most prescribed drugs worldwide for the treatment of numerous immune and inflammatory disorders. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily. There are several GR isoforms resulting from alternative RNA splicing and translation initiation of the GR transcript. Additionally, these isoforms are all subject to several transcriptional, post-transcriptional, and post-translational modifications, all of which affect the protein's stability and/or function. In this review, we summarize recent knowledge on the distinct GR isoforms and the processes that generate them. We also review the importance of all known transcriptional, post-transcriptional, and post-translational modifications, including the regulation of GR by microRNAs. Moreover, we discuss the crucial role of the putative GR-bound DNA sequence as an allosteric ligand influencing GR structure and activity. Finally, we describe how the differential composition and distinct regulation at multiple levels of different GR species could account for the wide and diverse effects of glucocorticoids
The ScaleX campaign: scale-crossing land-surface and boundary layer processes in the TERENO-preAlpine observatory
Augmenting long-term ecosystem-atmosphere observations with multidisciplinary intensive campaigns aims at closing gaps in spatial and temporal scales of observation for energy- and biogeochemical cycling, and at stimulating collaborative research. ScaleX is a collaborative measurement campaign, co-located with a long-term environmental observatory of the German TERENO (TERrestrial ENvironmental Observatories) network in mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land-surface atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated on a small number of locations
Epidémiologie et mortalité d'une cohorte de traumatisés graves hospitalisés en réanimation
DIJON-BU Médecine Pharmacie (212312103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF